
Mail Systems and Addressing
in 4.2BSD

Eric Allman†

Britton-Lee, Inc.
1919 Addison Street, Suite 105.
Berkeley, California 94704.

eric@Berkeley.ARPA
ucbvax!eric

ABSTRACT

Routing mail through a heterogeneous internet presents many new problems.
Among the worst of these is that of address mapping. Historically, this has
been handled on an ad hoc basis. However, this approach has become unman-
ageable as internets grow.

Sendmail acts a unified “post office” to which all mail can be submitted. Ad-
dress interpretation is controlled by a production system, which can parse both
old and new format addresses. The new format is “domain-based,” a flexible
technique that can handle many common situations. Sendmail is not intended
to perform user interface functions.

Sendmail will replace delivermail in the Berkeley 4.2 distribution. Several ma-
jor hosts are now or will soon be running sendmail. This change will affect any
users that route mail through a sendmail gateway. The changes that will be us-
er visible are emphasized.

The mail system to appear in 4.2BSD will contain a number of changes. Most of these
changes are based on the replacement of delivermail with a new module called sendmail. Send-
mail implements a general internetwork mail routing facility, featuring aliasing and forwarding,
automatic routing to network gateways, and flexible configuration. Of key interest to the mail
system user will be the changes in the network addressing structure.

In a simple network, each node has an address, and resources can be identified with a host-
resource pair; in particular, the mail system can refer to users using a host-username pair. Host
names and numbers have to be administered by a central authority, but usernames can be
assigned locally to each host.

In an internet, multiple networks with different characteristics and managements must com-
municate. In particular, the syntax and semantics of resource identification change. Certain spe-
cial cases can be handled trivially by ad hoc techniques, such as providing network names that
appear local to hosts on other networks, as with the Ethernet at Xerox PARC. However, the gen-
eral case is extremely complex. For example, some networks require that the route the message

†A considerable part of this work was done while under the employ of the INGRES Project at the University of Cali-
fornia at Berkeley.

Mail Systems and Addressing in 4.2BSD 1

Mail Systems and Addressing in 4.2BSD 2

takes be explicitly specified by the sender, simplifying the database update problem since only
adjacent hosts must be entered into the system tables, while others use logical addressing, where
the sender specifies the location of the recipient but not how to get there. Some networks use a
left-associative syntax and others use a right-associative syntax, causing ambiguity in mixed
addresses.

Internet standards seek to eliminate these problems. Initially, these proposed expanding the
address pairs to address triples, consisting of {network, host, username} triples. Network numbers
must be universally agreed upon, and hosts can be assigned locally on each network. The user-
level presentation was changed to address domains, comprised of a local resource identification
and a hierarchical domain specification with a common static root. The domain technique sepa-
rates the issue of physical versus logical addressing. For example, an address of the form
“eric@a.cc.berkeley.arpa” describes the logical organization of the address space (user “eric” on
host “a” in the Computer Center at Berkeley) but not the physical networks used (for example,
this could go over different networks depending on whether “a” were on an ethernet or a store-
and-forward network).

Sendmail is intended to help bridge the gap between the totally ad hoc world of networks
that know nothing of each other and the clean, tightly-coupled world of unique network numbers.
It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics specified by the
system administrator, as well as domain-based addressing. It helps guide the conversion of mes-
sage formats between disparate networks. In short, sendmail is designed to assist a graceful tran-
sition to consistent internetwork addressing schemes.

Section 1 defines some of the terms frequently left fuzzy when working in mail systems. Sec-
tion 2 discusses the design goals for sendmail. In section 3, the new address formats and basic
features of sendmail are described. Section 4 discusses some of the special problems of the UUCP
network. The differences between sendmail and delivermail are presented in section 5.

DISCLAIMER: A number of examples in this paper use names of actual peo-
ple and organizations. This is not intended to imply a commitment or even an
intellectual agreement on the part of these people or organizations. In particu-
lar, Bell Telephone Laboratories (BTL), Digital Equipment Corporation (DEC),
Lawrence Berkeley Laboratories (LBL), Britton-Lee Incorporated (BLI), and
the University of California at Berkeley are not committed to any of these pro-
posals at this time. Much of this paper represents no more than the personal
opinions of the author.

1. DEFINITIONS

There are four basic concepts that must be clearly distinguished when dealing with mail
systems: the user (or the user’s agent), the user’s identification, the user’s address, and the
route. These are distinguished primarily by their position independence.

1.1. User and Identification

The user is the being (a person or program) that is creating or receiving a message.
An agent is an entity operating on behalf of the user — such as a secretary who handles
my mail. or a program that automatically returns a message such as “I am at the UNI-
COM conference.”

The identification is the tag that goes along with the particular user. This tag is
completely independent of location. For example, my identification is the string “Eric All-
man,” and this identification does not change whether I am located at U.C. Berkeley, at
Britton-Lee, or at a scientific institute in Austria.

Version 1.3 USENIX − Jan 83 Last Mod 3/12/83

Mail Systems and Addressing in 4.2BSD 3

Since the identification is frequently ambiguous (e.g., there are two “Robert Henry”s
at Berkeley) it is common to add other disambiguating information that is not strictly part
of the identification (e.g., Robert “Code Generator” Henry versus Robert “System Admin-
istrator” Henry).

1.2. Address

The address specifies a location. As I move around, my address changes. For exam-
ple, my address might change from “eric@Berkeley.ARPA” to “eric@bli.UUCP” or “all-
man@IIASA.Austria” depending on my current affiliation.

However, an address is independent of the location of anyone else. That is, my
address remains the same to everyone who might be sending me mail. For example, a per-
son at MIT and a person at USC could both send to “eric@Berkeley.ARPA” and have it
arrive to the same mailbox.

Ideally a “white pages” service would be provided to map user identifications into
addresses (for example, see [Solomon81]). Currently this is handled by passing around
scraps of paper or by calling people on the telephone to find out their address.

1.3. Route

While an address specifies where to find a mailbox, a route specifies how to find the
mailbox. Specifically, it specifies a path from sender to receiver. As such, the route is
potentially different for every pair of people in the electronic universe.

Normally the route is hidden from the user by the software. However, some networks
put the burden of determining the route onto the sender. Although this simplifies the soft-
ware, it also greatly impairs the usability for most users. The UUCP network is an exam-
ple of such a network.

2. DESIGN GOALS

Design goals for sendmail1 include:

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell ver-
sion 7 mail, Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and hopefully UUCP
mail [Nowitz78]. ARPANET mail [Crocker82] was also required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at
least brought to the attention of a human for correct disposal; no message should ever
be completely lost. This goal was considered essential because of the emphasis on mail
in our environment. It has turned out to be one of the hardest goals to satisfy, espe-
cially in the face of the many anomalous message formats produced by various
ARPANET sites. For example, certain sites generate improperly formated addresses,
occasionally causing error-message loops. Some hosts use blanks in names, causing
problems with mail programs that assume that an address is one word. The semantics
of some fields are interpreted slightly differently by different sites. In summary, the
obscure features of the ARPANET mail protocol really are used and are difficult to
support, but must be supported.

(3) Existing software to do actual delivery should be used whenever possible. This goal
derives as much from political and practical considerations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to a sin-
gle network type (such as with multiple UUCP or Ethernets). This goal requires

1This section makes no distinction between delivermail and sendmail.

Version 1.3 USENIX − Jan 83 Last Mod 3/12/83

Mail Systems and Addressing in 4.2BSD 4

consideration of the contents of an address as well as its syntax in order to determine
which gateway to use.

(5) Configuration information should not be compiled into the code. A single compiled
program should be able to run as is at any site (barring such basic changes as the CPU
type or the operating system). We have found this seemingly unimportant goal to be
critical in real life. Besides the simple problems that occur when any program gets
recompiled in a different environment, many sites like to “fiddle” with anything that
they will be recompiling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let
individuals specify their own forwarding, without modifying the system alias file.

(7) Each user should be able to specify which mailer to execute to process mail being deliv-
ered for him. This feature allows users who are using specialized mailers that use a dif-
ferent format to build their environment without changing the system, and facilitates
specialized functions (such as returning an “I am on vacation” message).

(8) Network traffic should be minimized by batching addresses to a single host where possi-
ble, without assistance from the user.

These goals motivated the architecture illustrated in figure 1. The user interacts with a
mail generating and sending program. When the mail is created, the generator calls sendmail,
which routes the message to the correct mailer(s). Since some of the senders may be network
servers and some of the mailers may be network clients, sendmail may be used as an internet
mail gateway.

Figure 1 — Sendmail System Structure.

Version 1.3 USENIX − Jan 83 Last Mod 3/12/83

Mail Systems and Addressing in 4.2BSD 5

3. USAGE

3.1. Address Formats

Arguments may be flags or addresses. Flags set various processing options. Follow-
ing flag arguments, address arguments may be given. Addresses follow the syntax in
RFC822 [Crocker82] for ARPANET address formats. In brief, the format is:

(1) Anything in parentheses is thrown away (as a comment).

(2) Anything in angle brackets (“<>”) is preferred over anything else. This rule imple-
ments the ARPANET standard that addresses of the form

user name <machine-address>

will send to the electronic “machine-address” rather than the human “user name.”

(3) Double quotes (") quote phrases; backslashes quote characters. Backslashes are
more powerful in that they will cause otherwise equivalent phrases to compare dif-
ferently — for example, user and "user" are equivalent, but \user is different from
either of them. This might be used to avoid normal aliasing or duplicate suppres-
sion algorithms.

Parentheses, angle brackets, and double quotes must be properly balanced and

nested. The rewriting rules control remaining parsing2.

Although old style addresses are still accepted in most cases, the preferred address
format is based on ARPANET-style domain-based addresses [Su82a]. These addresses are
based on a hierarchical, logical decomposition of the address space. The addresses are hier-
archical in a sense similar to the U.S. postal addresses: the messages may first be routed to
the correct state, with no initial consideration of the city or other addressing details. The
addresses are logical in that each step in the hierarchy corresponds to a set of “naming
authorities” rather than a physical network.

For example, the address:

eric@HostA.BigSite.ARPA

would first look up the domain BigSite in the namespace administrated by ARPA. A query
could then be sent to BigSite for interpretation of HostA. Eventually the mail would arrive
at HostA, which would then do final delivery to user “eric.”

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival storage
of messages, useful for project administration and history. Programs are useful as recipi-
ents in a variety of situations, for example, to maintain a public repository of systems mes-
sages (such as the Berkeley msgs program).

Any address passing through the initial parsing algorithm as a local address (i.e, not
appearing to be a valid address for another mailer) is scanned for two special cases. If pre-
fixed by a vertical bar (“|”) the rest of the address is processed as a shell command. If the
user name begins with a slash mark (“/”) the name is used as a file name, instead of a
login name.

2Disclaimer: Some special processing is done after rewriting local names; see below.

Version 1.3 USENIX − Jan 83 Last Mod 3/12/83

Mail Systems and Addressing in 4.2BSD 6

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding allows
each user to reroute incoming mail destined for that account. Inclusion directs sendmail to
read a file for a list of addresses, and is normally used in conjunction with aliasing.

3.3.1. Aliasing

Aliasing maps local addresses to address lists using a system-wide file. This file is
hashed to speed access. Only addresses that parse as local are allowed as aliases; this
guarantees a unique key (since there are no nicknames for the local host).

3.3.2. Forwarding

After aliasing, if an recipient address specifies a local user sendmail searches for a
“.forward” file in the recipient’s home directory. If it exists, the message is not sent to
that user, but rather to the list of addresses in that file. Often this list will contain only
one address, and the feature will be used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For example,
forwarding to:

" | /usr/local/newmail myname"

will use a different incoming mailer.

3.3.3. Inclusion

Inclusion is specified in RFC 733 [Crocker77] syntax:

:Include: pathname

An address of this form reads the file specified by pathname and sends to all users listed
in that file.

The intent is not to support direct use of this feature, but rather to use this as a
subset of aliasing. For example, an alias of the form:

project: :include:/usr/project/userlist

is a method of letting a project maintain a mailing list without interaction with the sys-
tem administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :include: list
is changed.

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected. The
message comes in two parts: a message header and a message body, separated by a blank
line. The body is an uninterpreted sequence of text lines.

The header is formated as a series of lines of the form

field-name: field-value

Field-value can be split across lines by starting the following lines with a space or a tab.
Some header fields have special internal meaning, and have appropriate special processing.
Other headers are simply passed through. Some header fields may be added automatically,
such as time stamps.

4. THE UUCP PROBLEM

Of particular interest is the UUCP network. The explicit routing used in the UUCP
environment causes a number of serious problems. First, giving out an address is impossible

Version 1.3 USENIX − Jan 83 Last Mod 3/12/83

Mail Systems and Addressing in 4.2BSD 7

without knowing the address of your potential correspondent. This is typically handled by
specifying the address relative to some “well-known” host (e.g., ucbvax or decvax). Second, it
is often difficult to compute the set of addresses to reply to without some knowledge of the
topology of the network. Although it may be easy for a human being to do this under many
circumstances, a program does not have equally sophisticated heuristics built in. Third, cer-
tain addresses will become painfully and unnecessarily long, as when a message is routed
through many hosts in the USENET. And finally, certain “mixed domain” addresses are
impossible to parse unambiguously — e.g.,

decvax!ucbvax!lbl-h!user@LBL-CSAM

might have many possible resolutions, depending on whether the message was first routed to
decvax or to LBL-CSAM.

To solve this problem, the UUCP syntax would have to be changed to use addresses
rather than routes. For example, the address “decvax!ucbvax!eric” might be expressed as
“eric@ucbvax.UUCP” (with the hop through decvax implied). This address would itself be a
domain-based address; for example, an address might be of the form:

mark@d.cbosg.btl.UUCP

Hosts outside of Bell Telephone Laboratories would then only need to know how to get to a
designated BTL relay, and the BTL topology would only be maintained inside Bell.

There are three major problems associated with turning UUCP addresses into something
reasonable: defining the namespace, creating and propagating the necessary software, and
building and maintaining the database.

4.1. Defining the Namespace

Putting all UUCP hosts into a flat namespace (e.g., “...@host.UUCP”) is not practi-
cal for a number of reasons. First, with over 1600 sites already, and (with the increasing
availability of inexpensive microcomputers and autodialers) several thousand more coming
within a few years, the database update problem is simply intractable if the namespace is
flat. Second, there are almost certainly name conflicts today. Third, as the number of sites
grow the names become ever less mnemonic.

It seems inevitable that there be some sort of naming authority for the set of top
level names in the UUCP domain, as unpleasant a possibility as that may seem. It will
simply not be possible to have one host resolving all names. It may however be possible to
handle this in a fashion similar to that of assigning names of newsgroups in USENET.
However, it will be essential to encourage everyone to become subdomains of an existing
domain whenever possible — even though this will certainly bruise some egos. For exam-
ple, if a new host named “blid” were to be added to the UUCP network, it would probably
actually be addressed as “d.bli.UUCP” (i.e., as host “d” in the pseudo-domain “bli” rather
than as host “blid” in the UUCP domain).

4.2. Creating and Propagating the Software

The software required to implement a consistent namespace is relatively trivial. Two
modules are needed, one to handle incoming mail and one to handle outgoing mail.

The incoming module must be prepared to handle either old or new style addresses.
New-style addresses can be passed through unchanged. Old style addresses must be turned
into new style addresses where possible.

The outgoing module is slightly trickier. It must do a database lookup on the recipi-
ent addresses (passed on the command line) to determine what hosts to send the message
to. If those hosts do not accept new-style addresses, it must transform all addresses in the
header of the message into old style using the database lookup.

Version 1.3 USENIX − Jan 83 Last Mod 3/12/83

Mail Systems and Addressing in 4.2BSD 8

Both of these modules are straightforward except for the issue of modifying the
header. It seems prudent to choose one format for the message headers. For a number of
reasons, Berkeley has elected to use the ARPANET protocols for message formats. How-
ever, this protocol is somewhat difficult to parse.

Propagation is somewhat more difficult. There are a large number of hosts connected
to UUCP that will want to run completely standard systems (for very good reasons). The
strategy is not to convert the entire network — only enough of it it alleviate the problem.

4.3. Building and Maintaining the Database

This is by far the most difficult problem. A prototype for this database already
exists, but it is maintained by hand and does not pretend to be complete.

This problem will be reduced considerably if people choose to group their hosts into
subdomains. This would require a global update only when a new top level domain joined
the network. A message to a host in a subdomain could simply be routed to a known
domain gateway for further processing. For example, the address “eric@a.bli.UUCP” might
be routed to the “bli” gateway for redistribution; new hosts could be added within BLI
without notifying the rest of the world. Of course, other hosts could be notified as an effi-
ciency measure.

There may be more than one domain gateway. A domain such as BTL, for instance,
might have a dozen gateways to the outside world; a non-BTL site could choose the closest
gateway. The only restriction would be that all gateways maintain a consistent view of the
domain they represent.

4.4. Logical Structure

Logically, domains are organized into a tree. There need not be a host actually asso-
ciated with each level in the tree — for example, there will be no host associated with the
name “UUCP.” Similarly, an organization might group names together for administrative
reasons; for example, the name

CAD.research.BigCorp.UUCP

might not actually have a host representing “research.”

However, it may frequently be convenient to have a host or hosts that “represent” a
domain. For example, if a single host exists that represents Berkeley, then mail from out-
side Berkeley can forward mail to that host for further resolution without knowing Berke-
ley’s (rather volatile) topology. This is not unlike the operation of the telephone network.

This may also be useful inside certain large domains. For example, at Berkeley it
may be presumed that most hosts know about other hosts inside the Berkeley domain. But
if they process an address that is unknown, they can pass it “upstairs” for further examina-
tion. Thus as new hosts are added only one host (the domain master) must be updated
immediately; other hosts can be updated as convenient.

Ideally this name resolution process would be performed by a name server (e.g.,
[Su82b]) to avoid unnecessary copying of the message. However, in a batch network such as
UUCP this could result in unnecessary delays.

5. COMPARISON WITH DELIVERMAIL

Sendmail is an outgrowth of delivermail. The primary differences are:

(1) Configuration information is not compiled in. This change simplifies many of the prob-
lems of moving to other machines. It also allows easy debugging of new mailers.

Version 1.3 USENIX − Jan 83 Last Mod 3/12/83

Mail Systems and Addressing in 4.2BSD 9

(2) Address parsing is more flexible. For example, delivermail only supported one gateway
to any network, whereas sendmail can be sensitive to host names and reroute to differ-
ent gateways.

(3) Forwarding and :include: features eliminate the requirement that the system alias file
be writable by any user (or that an update program be written, or that the system
administration make all changes).

(4) Sendmail supports message batching across networks when a message is being sent to
multiple recipients.

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately but
can potentially be delivered later is stored in this queue for a later retry. The queue
also provides a buffer against system crashes; after the message has been collected it
may be reliably redelivered even if the system crashes during the initial delivery.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct interface
networks such as the ARPANET and/or Ethernet using SMTP (the Simple Mail
Transfer Protocol) over a TCP/IP connection.

Version 1.3 USENIX − Jan 83 Last Mod 3/12/83

REFERENCES

[Crocker77] Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr.,
Standard for the Format of ARPA Network Text Messages. RFC 733,
NIC 41952. In [Feinler78]. November 1977.

[Crocker82] Crocker, D. H., Standard for the Format of Arpa Internet Text Mes-
sages. RFC 822. Network Information Center, SRI International,
Menlo Park, California. August 1982.

[Feinler78] Feinler, E., and Postel, J. (eds.), ARPANET Protocol Handbook.
NIC 7104, Network Information Center, SRI International, Menlo
Park, California. 1978.

[Nowitz78] Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Sys-
tems. Bell Laboratories. In UNIX Programmer’s Manual, Seventh
Edition, Volume 2. August, 1978.

[Schmidt79] Schmidt, E., An Introduction to the Berkeley Network. University of
California, Berkeley California. 1979.

[Shoens79] Shoens, K., Mail Reference Manual. University of California, Berke-
ley. In UNIX Programmer’s Manual, Seventh Edition, Volume 2C.
December 1979.

[Solomon81] Solomon, M., Landweber, L., and Neuhengen, D., The Design of the
CSNET Name Server. CS-DN-2. University of Wisconsin, Madison.
October 1981.

[Su82a] Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for
Internet User Applications. RFC819. Network Information Center,
SRI International, Menlo Park, California. August 1982.

[Su82b] Su, Zaw-Sing, A Distributed System for Internet Name Service.
RFC830. Network Information Center, SRI International, Menlo
Park, California. October 1982.

Mail Systems and Addressing in 4.2BSD 10

