
SENDMAIL — An Internetwork Mail Router

Eric Allman†

Britton-Lee, Inc.
1919 Addison Street, Suite 105.
Berkeley, California 94704.

ABSTRACT

Routing mail through a heterogenous internet presents many new problems.
Among the worst of these is that of address mapping. Historically, this has
been handled on an ad hoc basis. However, this approach has become unman-
ageable as internets grow.

Sendmail acts a unified "post office" to which all mail can be submitted. Ad-
dress interpretation is controlled by a production system, which can parse both
domain-based addressing and old-style ad hoc addresses. The production sys-
tem is powerful enough to rewrite addresses in the message header to conform
to the standards of a number of common target networks, including old
(NCP/RFC733) Arpanet, new (TCP/RFC822) Arpanet, UUCP, and Phonenet.
Sendmail also implements an SMTP server, message queueing, and aliasing.

Sendmail implements a general internetwork mail routing facility, featuring aliasing and for-
warding, automatic routing to network gateways, and flexible configuration.

In a simple network, each node has an address, and resources can be identified with a host-
resource pair; in particular, the mail system can refer to users using a host-username pair. Host
names and numbers have to be administered by a central authority, but usernames can be
assigned locally to each host.

In an internet, multiple networks with different characterstics and managements must com-
municate. In particular, the syntax and semantics of resource identification change. Certain spe-
cial cases can be handled trivially by ad hoc techniques, such as providing network names that
appear local to hosts on other networks, as with the Ethernet at Xerox PARC. However, the
general case is extremely complex. For example, some networks require point-to-point routing,
which simplifies the database update problem since only adjacent hosts must be entered into the
system tables, while others use end-to-end addressing. Some networks use a left-associative syn-
tax and others use a right-associative syntax, causing ambiguity in mixed addresses.

Internet standards seek to eliminate these problems. Initially, these proposed expanding the
address pairs to address triples, consisting of {network, host, resource} triples. Network numbers
must be universally agreed upon, and hosts can be assigned locally on each network. The user-
level presentation was quickly expanded to address domains, comprised of a local resource identifi-
cation and a hierarchical domain specification with a common static root. The domain technique
separates the issue of physical versus logical addressing. For example, an address of the form

†A considerable part of this work was done while under the employ of the INGRES Project at the University of Cali-
fornia at Berkeley.

SENDMAIL 1

SENDMAIL 2

“eric@a.cc.berkeley.arpa” describes only the logical organization of the address space.

Sendmail is intended to help bridge the gap between the totally ad hoc world of networks
that know nothing of each other and the clean, tightly-coupled world of unique network numbers.
It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics specified by the
system administrator, as well as domain-based addressing. It helps guide the conversion of mes-
sage formats between disparate networks. In short, sendmail is designed to assist a graceful tran-
sition to consistent internetwork addressing schemes.

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the basic
functions of the system. In section 3, details of usage are discussed. Section 4 compares sendmail
to other internet mail routers, and an evaluation of sendmail is given in section 5, including future
plans.

1. DESIGN GOALS

Design goals for sendmail include:

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell ver-
sion 7 mail [UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and hope-
fully UUCP mail [Nowitz78a, Nowitz78b]. ARPANET mail [Crocker77a, Postel77] was
also required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at
least brought to the attention of a human for correct disposal; no message should ever
be completely lost. This goal was considered essential because of the emphasis on mail
in our environment. It has turned out to be one of the hardest goals to satisfy, espe-
cially in the face of the many anomalous message formats produced by various
ARPANET sites. For example, certain sites generate improperly formated addresses,
occasionally causing error-message loops. Some hosts use blanks in names, causing
problems with UNIX mail programs that assume that an address is one word. The
semantics of some fields are interpreted slightly differently by different sites. In sum-
mary, the obscure features of the ARPANET mail protocol really are used and are diffi-
cult to support, but must be supported.

(3) Existing software to do actual delivery should be used whenever possible. This goal
derives as much from political and practical considerations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to a sin-
gle network type (such as with multiple UUCP or Ether nets [Metcalfe76]). This goal
requires consideration of the contents of an address as well as its syntax in order to
determine which gateway to use. For example, the ARPANET is bringing up the TCP
protocol to replace the old NCP protocol. No host at Berkeley runs both TCP and
NCP, so it is necessary to look at the ARPANET host name to determine whether to
route mail to an NCP gateway or a TCP gateway.

(5) Configuration should not be compiled into the code. A single compiled program should
be able to run as is at any site (barring such basic changes as the CPU type or the
operating system). We have found this seemingly unimportant goal to be critical in
real life. Besides the simple problems that occur when any program gets recompiled in
a different environment, many sites like to “fiddle” with anything that they will be
recompiling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let
individuals specify their own forwarding, without modifying the system alias file.

(7) Each user should be able to specify which mailer to execute to process mail being deliv-
ered for him. This feature allows users who are using specialized mailers that use a dif-
ferent format to build their environment without changing the system, and facilitates

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 3

specialized functions (such as returning an “I am on vacation” message).

(8) Network traffic should be minimized by batching addresses to a single host where possi-
ble, without assistance from the user.

These goals motivated the architecture illustrated in figure 1. The user interacts with a
mail generating and sending program. When the mail is created, the generator calls sendmail,
which routes the message to the correct mailer(s). Since some of the senders may be network
servers and some of the mailers may be network clients, sendmail may be used as an internet
mail gateway.

2. OVERVIEW

2.1. System Organization

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it
collects a message generated by a user interface program (UIP) such as Berkeley Mail, MS
[Crocker77b], or MH [Borden79], edits the message as required by the destination network,

and calls appropriate mailers to do mail delivery or queueing for network transmission1.
This discipline allows the insertion of new mailers at minimum cost. In this sense sendmail
resembles the Message Processing Module (MPM) of [Postel79b].

Figure 1 — Sendmail System Structure.

1except when mailing to a file, when sendmail does the delivery directly.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 4

2.2. Interfaces to the Outside World

There are three ways sendmail can communicate with the outside world, both in
receiving and in sending mail. These are using the conventional UNIX argument vec-
tor/return status, speaking SMTP over a pair of UNIX pipes, and speaking SMTP over an
interprocess(or) channel.

2.2.1. Argument vector/exit status

This technique is the standard UNIX method for communicating with the process.
A list of recipients is sent in the argument vector, and the message body is sent on the
standard input. Anything that the mailer prints is simply collected and sent back to
the sender if there were any problems. The exit status from the mailer is collected after
the message is sent, and a diagnostic is printed if appropriate.

2.2.2. SMTP over pipes

The SMTP protocol [Postel82] can be used to run an interactive lock-step inter-
face with the mailer. A subprocess is still created, but no recipient addresses are passed
to the mailer via the argument list. Instead, they are passed one at a time in com-
mands sent to the processes standard input. Anything appearing on the standard out-
put must be a reply code in a special format.

2.2.3. SMTP over an IPC connection

This technique is similar to the previous technique, except that it uses a 4.2BSD
IPC channel [UNIX83]. This method is exceptionally flexible in that the mailer need
not reside on the same machine. It is normally used to connect to a sendmail process
on another machine.

2.3. Operational Description

When a sender wants to send a message, it issues a request to sendmail using one of
the three methods described above. Sendmail operates in two distinct phases. In the first
phase, it collects and stores the message. In the second phase, message delivery occurs. If
there were errors during processing during the second phase, sendmail creates and returns a
new message describing the error and/or returns an status code telling what went wrong.

2.3.1. Argument processing and address parsing

If sendmail is called using one of the two subprocess techniques, the arguments are
first scanned and option specifications are processed. Recipient addresses are then col-
lected, either from the command line or from the SMTP RCPT command, and a list of
recipients is created. Aliases are expanded at this step, including mailing lists. As
much validation as possible of the addresses is done at this step: syntax is checked, and
local addresses are verified, but detailed checking of host names and addresses is
deferred until delivery. Forwarding is also performed as the local addresses are verified.

Sendmail appends each address to the recipient list after parsing. When a name
is aliased or forwarded, the old name is retained in the list, and a flag is set that tells
the delivery phase to ignore this recipient. This list is kept free from duplicates, pre-
venting alias loops and duplicate messages deliverd to the same recipient, as might
occur if a person is in two groups.

2.3.2. Message collection

Sendmail then collects the message. The message should have a header at the
beginning. No formatting requirements are imposed on the message except that they

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 5

must be lines of text (i.e., binary data is not allowed). The header is parsed and stored
in memory, and the body of the message is saved in a temporary file.

To simplify the program interface, the message is collected even if no addresses
were valid. The message will be returned with an error.

2.3.3. Message delivery

For each unique mailer and host in the recipient list, sendmail calls the appropri-
ate mailer. Each mailer invocation sends to all users receiving the message on one host.
Mailers that only accept one recipient at a time are handled properly.

The message is sent to the mailer using one of the same three interfaces used to
submit a message to sendmail. Each copy of the message is prepended by a customized
header. The mailer status code is caught and checked, and a suitable error message
given as appropriate. The exit code must conform to a system standard or a generic
message (“Service unavailable”) is given.

2.3.4. Queueing for retransmission

If the mailer returned an status that indicated that it might be able to handle the
mail later, sendmail will queue the mail and try again later.

2.3.5. Return to sender

If errors occur during processing, sendmail returns the message to the sender for
retransmission. The letter can be mailed back or written in the file “dead.letter” in the

sender’s home directory2.

2.4. Message Header Editing

Certain editing of the message header occurs automatically. Header lines can be
inserted under control of the configuration file. Some lines can be merged; for example, a
“From:” line and a “Full-name:” line can be merged under certain circumstances.

2.5. Configuration File

Almost all configuration information is read at runtime from an ASCII file, encoding
macro definitions (defining the value of macros used internally), header declarations (telling
sendmail the format of header lines that it will process specially, i.e., lines that it will add
or reformat), mailer definitions (giving information such as the location and characteristics
of each mailer), and address rewriting rules (a limited production system to rewrite
addresses which is used to parse and rewrite the addresses).

To improve performance when reading the configuration file, a memory image can be
provided. This provides a “compiled” form of the configuration file.

3. USAGE AND IMPLEMENTATION

3.1. Arguments

Arguments may be flags and addresses. Flags set various processing options. Follow-
ing flag arguments, address arguments may be given, unless we are running in SMTP

2Obviously, if the site giving the error is not the originating site, the only reasonable option is to mail back to the
sender. Also, there are many more error disposition options, but they only effect the error message — the “return to
sender” function is always handled in one of these two ways.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 6

mode. Addresses follow the syntax in RFC822 [Crocker82] for ARPANET address formats.
In brief, the format is:

(1) Anything in parentheses is thrown away (as a comment).

(2) Anything in angle brackets (“<>”) is preferred over anything else. This rule imple-
ments the ARPANET standard that addresses of the form

user name <machine-address>

will send to the electronic “machine-address” rather than the human “user name.”

(3) Double quotes (") quote phrases; backslashes quote characters. Backslashes are
more powerful in that they will cause otherwise equivalent phrases to compare dif-
ferently — for example, user and "user" are equivalent, but \user is different from
either of them.

Parentheses, angle brackets, and double quotes must be properly balanced and

nested. The rewriting rules control remaining parsing3.

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival storage
of messages, useful for project administration and history. Programs are useful as recipi-
ents in a variety of situations, for example, to maintain a public repository of systems mes-
sages (such as the Berkeley msgs program, or the MARS system [Sattley78]).

Any address passing through the initial parsing algorithm as a local address (i.e, not
appearing to be a valid address for another mailer) is scanned for two special cases. If pre-
fixed by a vertical bar (“|”) the rest of the address is processed as a shell command. If the
user name begins with a slash mark (“/”) the name is used as a file name, instead of a
login name.

Files that have setuid or setgid bits set but no execute bits set have those bits hon-
ored if sendmail is running as root.

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding allows
each user to reroute incoming mail destined for that account. Inclusion directs sendmail to
read a file for a list of addresses, and is normally used in conjunction with aliasing.

3.3.1. Aliasing

Aliasing maps names to address lists using a system-wide file. This file is indexed
to speed access. Only names that parse as local are allowed as aliases; this guarantees a
unique key (since there are no nicknames for the local host).

3.3.2. Forwarding

After aliasing, recipients that are local and valid are checked for the existence of a
“.forward” file in their home directory. If it exists, the message is not sent to that user,
but rather to the list of users in that file. Often this list will contain only one address,
and the feature will be used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For example,
forwarding to:

3Disclaimer: Some special processing is done after rewriting local names; see below.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 7

" | /usr/local/newmail myname"

will use a different incoming mailer.

3.3.3. Inclusion

Inclusion is specified in RFC 733 [Crocker77a] syntax:

:Include: pathname

An address of this form reads the file specified by pathname and sends to all users listed
in that file.

The intent is not to support direct use of this feature, but rather to use this as a
subset of aliasing. For example, an alias of the form:

project: :include:/usr/project/userlist

is a method of letting a project maintain a mailing list without interaction with the sys-
tem administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :include: list
is changed.

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected. The
message comes in two parts: a message header and a message body, separated by a blank
line.

The header is formatted as a series of lines of the form

field-name: field-value

Field-value can be split across lines by starting the following lines with a space or a tab.
Some header fields have special internal meaning, and have appropriate special processing.
Other headers are simply passed through. Some header fields may be added automatically,
such as time stamps.

The body is a series of text lines. It is completely uninterpreted and untouched,
except that lines beginning with a dot have the dot doubled when transmitted over an
SMTP channel. This extra dot is stripped by the receiver.

3.5. Message Delivery

The send queue is ordered by receiving host before transmission to implement mes-
sage batching. Each address is marked as it is sent so rescanning the list is safe. An argu-
ment list is built as the scan proceeds. Mail to files is detected during the scan of the send
list. The interface to the mailer is performed using one of the techniques described in sec-
tion 2.2.

After a connection is established, sendmail makes the per-mailer changes to the
header and sends the result to the mailer. If any mail is rejected by the mailer, a flag is set
to invoke the return-to-sender function after all delivery completes.

3.6. Queued Messages

If the mailer returns a “temporary failure” exit status, the message is queued. A con-
trol file is used to describe the recipients to be sent to and various other parameters. This
control file is formatted as a series of lines, each describing a sender, a recipient, the time of
submission, or some other salient parameter of the message. The header of the message is
stored in the control file, so that the associated data file in the queue is just the temporary
file that was originally collected.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 8

3.7. Configuration

Configuration is controlled primarily by a configuration file read at startup. Sendmail
should not need to be recomplied except

(1) To change operating systems (V6, V7/32V, 4BSD).

(2) To remove or insert the DBM (UNIX database) library.

(3) To change ARPANET reply codes.

(4) To add headers fields requiring special processing.

Adding mailers or changing parsing (i.e., rewriting) or routing information does not require
recompilation.

If the mail is being sent by a local user, and the file “.mailcf” exists in the sender’s
home directory, that file is read as a configuration file after the system configuration file.
The primary use of this feature is to add header lines.

The configuration file encodes macro definitions, header definitions, mailer definitions,
rewriting rules, and options.

3.7.1. Macros

Macros can be used in three ways. Certain macros transmit unstructured textual
information into the mail system, such as the name sendmail will use to identify itself in
error messages. Other macros transmit information from sendmail to the configuration
file for use in creating other fields (such as argument vectors to mailers); e.g., the name
of the sender, and the host and user of the recipient. Other macros are unused inter-
nally, and can be used as shorthand in the configuration file.

3.7.2. Header declarations

Header declarations inform sendmail of the format of known header lines. Knowl-
edge of a few header lines is built into sendmail, such as the “From:” and “Date:” lines.

Most configured headers will be automatically inserted in the outgoing message if
they don’t exist in the incoming message. Certain headers are suppressed by some
mailers.

3.7.3. Mailer declarations

Mailer declarations tell sendmail of the various mailers available to it. The defini-
tion specifies the internal name of the mailer, the pathname of the program to call,
some flags associated with the mailer, and an argument vector to be used on the call;
this vector is macro-expanded before use.

3.7.4. Address rewriting rules

The heart of address parsing in sendmail is a set of rewriting rules. These are an
ordered list of pattern-replacement rules, (somewhat like a production system, except
that order is critical), which are applied to each address. The address is rewritten tex-
tually until it is either rewritten into a special canonical form (i.e., a (mailer, host, user)
3-tuple, such as {arpanet, usc-isif, postel} representing the address “postel@usc-isif”), or
it falls off the end. When a pattern matches, the rule is reapplied until it fails.

The configuration file also supports the editing of addresses into different formats.
For example, an address of the form:

ucsfcgl!tef

might be mapped into:

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 9

tef@ucsfcgl.UUCP

to conform to the domain syntax. Translations can also be done in the other direction.

3.7.5. Option setting

There are several options that can be set from the configuration file. These
include the pathnames of various support files, timeouts, default modes, etc.

4. COMPARISON WITH OTHER MAILERS

4.1. Delivermail

Sendmail is an outgrowth of delivermail. The primary differences are:

(1) Configuration information is not compiled in. This change simplifies many of the
problems of moving to other machines. It also allows easy debugging of new mail-
ers.

(2) Address parsing is more flexible. For example, delivermail only supported one gate-
way to any network, whereas sendmail can be sensitive to host names and reroute
to different gateways.

(3) Forwarding and :include: features eliminate the requirement that the system alias
file be writable by any user (or that an update program be written, or that the sys-
tem administration make all changes).

(4) Sendmail supports message batching across networks when a message is being sent
to multiple recipients.

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately
but can potentially be delivered later is stored in this queue for a later retry. The
queue also provides a buffer against system crashes; after the message has been col-
lected it may be reliably redelivered even if the system crashes during the initial
delivery.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct inter-
face networks such as the ARPANET and/or Ethernet using SMTP (the Simple
Mail Transfer Protocol) over a TCP/IP connection.

4.2. MMDF

MMDF [Crocker79] spans a wider problem set than sendmail. For example, the
domain of MMDF includes a “phone network” mailer, whereas sendmail calls on preexist-
ing mailers in most cases.

MMDF and sendmail both support aliasing, customized mailers, message batching,
automatic forwarding to gateways, queueing, and retransmission. MMDF supports two-
stage timeout, which sendmail does not support.

The configuration for MMDF is compiled into the code4.

Since MMDF does not consider backwards compatibility as a design goal, the address
parsing is simpler but much less flexible.

It is somewhat harder to integrate a new channel5 into MMDF. In particular,

4Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either com-
piled or dynamic tables.

5The MMDF equivalent of a sendmail “mailer.”

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 10

MMDF must know the location and format of host tables for all channels, and the channel
must speak a special protocol. This allows MMDF to do additional verification (such as
verifying host names) at submission time.

MMDF strictly separates the submission and delivery phases. Although sendmail has
the concept of each of these stages, they are integrated into one program, whereas in
MMDF they are split into two programs.

4.3. Message Processing Module

The Message Processing Module (MPM) discussed by Postel [Postel79b] matches
sendmail closely in terms of its basic architecture. However, like MMDF, the MPM
includes the network interface software as part of its domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus allowing
simpler handling of errors by the mailer than is possible in sendmail. When a message
queued by sendmail is sent, any errors must be returned to the sender by the mailer itself.
Both MPM and MMDF mailers can return an immediate error response, and a single error
processor can create an appropriate response.

MPM prefers passing the message as a structured object, with type-length-value

tuples6. Such a convention requires a much higher degree of cooperation between mailers
than is required by sendmail. MPM also assumes a universally agreed upon internet name
space (with each address in the form of a net-host-user tuple), which sendmail does not.

5. EVALUATIONS AND FUTURE PLANS

Sendmail is designed to work in a nonhomogeneous environment. Every attempt is made
to avoid imposing unnecessary constraints on the underlying mailers. This goal has driven
much of the design. One of the major problems has been the lack of a uniform address space,
as postulated in [Postel79a] and [Postel79b].

A nonuniform address space implies that a path will be specified in all addresses, either
explicitly (as part of the address) or implicitly (as with implied forwarding to gateways). This
restriction has the unpleasant effect of making replying to messages exceedingly difficult, since
there is no one “address” for any person, but only a way to get there from wherever you are.

Interfacing to mail programs that were not initially intended to be applied in an internet
environment has been amazingly successful, and has reduced the job to a manageable task.

Sendmail has knowledge of a few difficult environments built in. It generates ARPANET
FTP/SMTP compatible error messages (prepended with three-digit numbers [Neigus73, Pos-
tel74, Postel82]) as necessary, optionally generates UNIX-style “From” lines on the front of
messages for some mailers, and knows how to parse the same lines on input. Also, error han-
dling has an option customized for BerkNet.

The decision to avoid doing any type of delivery where possible (even, or perhaps espe-
cially, local delivery) has turned out to be a good idea. Even with local delivery, there are
issues of the location of the mailbox, the format of the mailbox, the locking protocol used, etc.,
that are best decided by other programs. One surprisingly major annoyance in many internet
mailers is that the location and format of local mail is built in. The feeling seems to be that
local mail is so common that it should be efficient. This feeling is not born out by our experi-
ence; on the contrary, the location and format of mailboxes seems to vary widely from system
to system.

6This is similar to the NBS standard.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 11

The ability to automatically generate a response to incoming mail (by forwarding mail to
a program) seems useful (“I am on vacation until late August....”) but can create problems
such as forwarding loops (two people on vacation whose programs send notes back and forth,
for instance) if these programs are not well written. A program could be written to do stan-
dard tasks correctly, but this would solve the general case.

It might be desirable to implement some form of load limiting. I am unaware of any
mail system that addresses this problem, nor am I aware of any reasonable solution at this
time.

The configuration file is currently practically inscrutable; considerable convenience could
be realized with a higher-level format.

It seems clear that common protocols will be changing soon to accommodate changing
requirements and environments. These changes will include modifications to the message
header (e.g., [NBS80]) or to the body of the message itself (such as for multimedia messages
[Postel80]). Experience indicates that these changes should be relatively trivial to integrate
into the existing system.

In tightly coupled environments, it would be nice to have a name server such as Grapvine
[Birrell82] integrated into the mail system. This would allow a site such as “Berkeley” to
appear as a single host, rather than as a collection of hosts, and would allow people to move
transparently among machines without having to change their addresses. Such a facility would
require an automatically updated database and some method of resolving conflicts. Ideally
this would be effective even without all hosts being under a single management. However, it is
not clear whether this feature should be integrated into the aliasing facility or should be con-
sidered a “value added” feature outside sendmail itself.

As a more interesting case, the CSNET name server [Solomon81] provides an facility that
goes beyond a single tightly-coupled environment. Such a facility would normally exist outside
of sendmail however.

ACKNOWLEDGEMENTS

Thanks are due to Kurt Shoens for his continual cheerful assistance and good advice, Bill
Joy for pointing me in the correct direction (over and over), and Mark Horton for more advice,
prodding, and many of the good ideas. Kurt and Eric Schmidt are to be credited for using deliv-
ermail as a server for their programs (Mail and BerkNet respectively) before any sane person
should have, and making the necessary modifications promptly and happily. Eric gave me consid-
erable advice about the perils of network software which saved me an unknown amount of work
and grief. Mark did the original implementation of the DBM version of aliasing, installed the
VFORK code, wrote the current version of rmail, and was the person who really convinced me to
put the work into delivermail to turn it into sendmail. Kurt deserves accolades for using sendmail
when I was myself afraid to take the risk; how a person can continue to be so enthusiastic in the
face of so much bitter reality is beyond me.

Kurt, Mark, Kirk McKusick, Marvin Solomon, and many others have reviewed this paper,
giving considerable useful advice.

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob Epstein at Britton-
Lee, who both knowingly allowed me to put so much work into this project when there were so
many other things I really should have been working on.

Version 4.1 DRAFT Last Mod 7/25/83

REFERENCES

[Birrell82] Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D.,
“Grapevine: An Exercise in Distributed Computing.” In Comm. A.C.M.
25, 4, April 82.

[Borden79] Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Message Handling
System: Users’ Manual. R-2367-PAF. Rand Corporation. October 1979.

[Crocker77a] Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr.,
Standard for the Format of ARPA Network Text Messages. RFC 733,
NIC 41952. In [Feinler78]. November 1977.

[Crocker77b] Crocker, D. H., Framework and Functions of the MS Personal Message
System. R-2134-ARPA, Rand Corporation, Santa Monica, California.
1977.

[Crocker79] Crocker, D. H., Szurkowski, E. S., and Farber, D. J., An Internetwork
Memo Distribution Facility — MMDF. 6th Data Communication Sym-
posium, Asilomar. November 1979.

[Crocker82] Crocker, D. H., Standard for the Format of Arpa Internet Text Messages.
RFC 822. Network Information Center, SRI International, Menlo Park,
California. August 1982.

[Metcalfe76] Metcalfe, R., and Boggs, D., “Ethernet: Distributed Packet Switching for
Local Computer Networks”, Communications of the ACM 19, 7. July
1976.

[Feinler78] Feinler, E., and Postel, J. (eds.), ARPANET Protocol Handbook. NIC
7104, Network Information Center, SRI International, Menlo Park, Cali-
fornia. 1978.

[NBS80] National Bureau of Standards, Specification of a Draft Message Format
Standard. Report No. ICST/CBOS 80-2. October 1980.

[Neigus73] Neigus, N., File Transfer Protocol for the ARPA Network. RFC 542, NIC
17759. In [Feinler78]. August, 1973.

[Nowitz78a] Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Systems.
Bell Laboratories. In UNIX Programmer’s Manual, Seventh Edition, Vol-
ume 2. August, 1978.

[Nowitz78b] Nowitz, D. A., Uucp Implementation Description. Bell Laboratories. In
UNIX Programmer’s Manual, Seventh Edition, Volume 2. October, 1978.

[Postel74] Postel, J., and Neigus, N., Revised FTP Reply Codes. RFC 640, NIC
30843. In [Feinler78]. June, 1974.

[Postel77] Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November 1977.

[Postel79a] Postel, J., Internet Message Protocol. RFC 753, IEN 85. Network Infor-
mation Center, SRI International, Menlo Park, California. March 1979.

[Postel79b] Postel, J. B., An Internetwork Message Structure. In Proceedings of the
Sixth Data Communications Symposium, IEEE. New York. November
1979.

[Postel80] Postel, J. B., A Structured Format for Transmission of Multi-Media Doc-
uments. RFC 767. Network Information Center, SRI International,
Menlo Park, California. August 1980.

SENDMAIL 12

SENDMAIL 13

[Postel82] Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting
RFC788). Network Information Center, SRI International, Menlo Park,
California. August 1982.

[Schmidt79] Schmidt, E., An Introduction to the Berkeley Network. University of Cal-
ifornia, Berkeley California. 1979.

[Shoens79] Shoens, K., Mail Reference Manual. University of California, Berkeley.
In UNIX Programmer’s Manual, Seventh Edition, Volume 2C. December
1979.

[Sluizer81] Sluizer, S., and Postel, J. B., Mail Transfer Protocol. RFC 780. Network
Information Center, SRI International, Menlo Park, California. May
1981.

[Solomon81] Solomon, M., Landweber, L., and Neuhengen, D., “The Design of the
CSNET Name Server.” CS-DN-2, University of Wisconsin, Madison.
November 1981.

[Su82] Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for
Internet User Applications. RFC819. Network Information Center, SRI
International, Menlo Park, California. August 1982.

[UNIX83] The UNIX Programmer’s Manual, Seventh Edition, Virtual VAX-11 Ver-
sion, Volume 1. Bell Laboratories, modified by the University of Califor-
nia, Berkeley, California. March, 1983.

Version 4.1 DRAFT Last Mod 7/25/83

