
-25-

Appendix: character functions

This appendix gives the uses the editor makes of each character. The characters are pre-
sented in their order in the ASCII character set: Control characters come first, then most special
characters, then the digits, upper and then lower case characters.

For each character we tell a meaning it has as a command and any meaning it has during an
insert. If it has only meaning as a command, then only this is discussed. Section numbers in
parentheses indicate where the character is discussed; a ‘f’ after the section number means that
the character is mentioned in a footnote.

ˆ@ Not a command character. If typed as the first character of an insertion it is
replaced with the last text inserted, and the insert terminates. Only 128 charac-
ters are saved from the last insert; if more characters were inserted the mecha-
nism is not available. A ˆ@ cannot be part of the file due to the editor imple-
mentation (7.5f).

ˆA Unused.

ˆB Backward window. A count specifies repetition. Two lines of continuity are kept
if possible (2.1, 6.1, 7.2).

ˆC Unused.

ˆD As a command, scrolls down a half-window of text. A count gives the number of
(logical) lines to scroll, and is remembered for future ˆD and ˆU commands
(2.1, 7.2). During an insert, backtabs over autoindent white space at the begin-
ning of a line (6.6, 7.5); this white space cannot be backspaced over.

ˆE Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3 only.)

ˆF Forward window. A count specifies repetition. Two lines of continuity are kept
if possible (2.1, 6.1, 7.2).

ˆG Equivalent to :fCR, printing the current file, whether it has been modified, the
current line number and the number of lines in the file, and the percentage of the
way through the file that you are.

ˆH (BS) Same as left arrow. (See h). During an insert, eliminates the last input char-
acter, backing over it but not erasing it; it remains so you can see what you
typed if you wish to type something only slightly different (3.1, 7.5).

ˆI (TAB) Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab character it rests at the last of the spaces which rep-
resent the tab. The spacing of tabstops is controlled by the tabstop option (4.1,
6.6).

ˆJ (LF) Same as down arrow (see j).

ˆK Unused.

ˆL The ASCII formfeed character, this causes the screen to be cleared and redrawn.
This is useful after a transmission error, if characters typed by a program other
than the editor scramble the screen, or after output is stopped by an interrupt
(5.4, 7.2f).

ˆM (CR) A carriage return advances to the next line, at the first non-white position in the
line. Given a count, it advances that many lines (2.3). During an insert, a CR

causes the insert to continue onto another line (3.1).

ˆN Same as down arrow (see j).

ˆO Unused.

ˆP Same as up arrow (see k).

ˆQ Not a command character. In input mode, ˆQ quotes the next character, the
same as ˆV, except that some teletype drivers will eat the ˆQ so that the editor

-26-

never sees it.

ˆR Redraws the current screen, eliminating logical lines not corresponding to physi-
cal lines (lines with only a single @ character on them). On hardcopy terminals
in open mode, retypes the current line (5.4, 7.2, 7.8).

ˆS Unused. Some teletype drivers use ˆS to suspend output until pressed.ˆQis

ˆT Not a command character. During an insert, with autoindent set and at the
beginning of the line, inserts shiftwidth white space.

ˆU Scrolls the screen up, inverting ˆD which scrolls down. Counts work as they do
for ˆD, and the previous scroll amount is common to both. On a dumb termi-
nal, ˆU will often necessitate clearing and redrawing the screen further back in
the file (2.1, 7.2).

ˆV Not a command character. In input mode, quotes the next character so that it is
possible to insert non-printing and special characters into the file (4.2, 7.5).

ˆW Not a command character. During an insert, backs up as b would in command
mode; the deleted characters remain on the display (see ˆH) (7.5).

ˆX Unused.

ˆY Exposes one more line above the current screen, leaving the cursor where it is if
possible. (No mnemonic value for this key; however, it is next to ˆU which
scrolls up a bunch.) (Version 3 only.)

ˆZ If supported by the Unix system, stops the editor, exiting to the top level shell.
Same as :stopCR. Otherwise, unused.

ˆ[(ESC) Cancels a partially formed command, such as a z when no following character
has yet been given; terminates inputs on the last line (read by commands such as
: / and ?); ends insertions of new text into the buffer. If an ESC is given when
quiescent in command state, the editor rings the bell or flashes the screen. You
can thus hit ESC if you don’t know what is happening till the editor rings the
bell. If you don’t know if you are in insert mode you can type ESCa, and then
material to be input; the material will be inserted correctly whether or not you
were in insert mode when you started (1.5, 3.1, 7.5).

ˆ\ Unused.

ˆ] Searches for the word which is after the cursor as a tag. Equivalent to typing
:ta, this word, and then a CR. Mnemonically, this command is ‘‘go right to’’
(7.3).

ˆ↑ Equivalent to :e #CR, returning to the previous position in the last edited file,
or editing a file which you specified if you got a ‘No write since last change diag-
nostic’ and do not want to have to type the file name again (7.3). (You have to
do a :w before ˆ↑ will work in this case. If you do not wish to write the file you
should do :e! #CR instead.)

ˆ Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.

SPACE Same as right arrow (see l).

! An operator, which processes lines from the buffer with reformatting commands.
Follow ! with the object to be processed, and then the command name termi-
nated by CR. Doubling ! and preceding it by a count causes count lines to be fil-
tered; otherwise the count is passed on to the object after the !. Thus 2!}fmtCR
reformats the next two paragraphs by running them through the program fmt. If
you are working on LISP, the command !%grindCR,* given at the beginning of a
function, will run the text of the function through the LISP grinder (6.7, 7.3). To

*Both fmt and grind are Berkeley programs and may not be present at all installations.

-27-

read a file or the output of a command into the buffer use :r (7.3). To simply
execute a command use :! (7.3).

" Precedes a named buffer specification. There are named buffers 1−9 used for
saving deleted text and named buffers a−z into which you can place text (4.3,
6.3)

The macro character which, when followed by a number, will substitute for a
function key on terminals without function keys (6.9). In input mode, if this is
your erase character, it will delete the last character you typed in input mode,
and must be preceded with a \ to insert it, since it normally backs over the last
input character you gave.

$ Moves to the end of the current line. If you :se listCR, then the end of each line
will be shown by printing a $ after the end of the displayed text in the line.
Given a count, advances to the count’th following end of line; thus 2$ advances
to the end of the following line.

% Moves to the parenthesis or brace { } which balances the parenthesis or brace at
the current cursor position.

& A synonym for :&CR, by analogy with the ex & command.

´ When followed by a ´ returns to the previous context at the beginning of a line.
The previous context is set whenever the current line is moved in a non-relative
way. When followed by a letter a−z, returns to the line which was marked with
this letter with a m command, at the first non-white character in the line. (2.2,
5.3). When used with an operator such as d, the operation takes place over com-
plete lines; if you use `, the operation takes place from the exact marked place to
the current cursor position within the line.

(Retreats to the beginning of a sentence, or to the beginning of a LISP s-expression
if the lisp option is set. A sentence ends at a . ! or ? which is followed by either
the end of a line or by two spaces. Any number of closing)] " and ´ characters
may appear after the . ! or ?, and before the spaces or end of line. Sentences
also begin at paragraph and section boundaries (see { and [[below). A count
advances that many sentences (4.2, 6.8).

) Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence (4.2, 6.8).

* Unused.

+ Same as CR when used as a command.

, Reverse of the last f F t or T command, looking the other way in the current
line. Especially useful after hitting too many ; characters. A count repeats the
search.

− Retreats to the previous line at the first non-white character. This is the inverse
of + and RETURN. If the line moved to is not on the screen, the screen is
scrolled, or cleared and redrawn if this is not possible. If a large amount of
scrolling would be required the screen is also cleared and redrawn, with the cur-
rent line at the center (2.3).

. Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit . to delete
more and more words/lines. Given a count, it passes it on to the command
being repeated. Thus after a 2dw, 3. deletes three words (3.3, 6.3, 7.2, 7.4).

/ Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The normal input editing sequences may be used dur-
ing the input on the bottom line; an returns to command state without ever
searching. The search begins when you hit CR to terminate the pattern; the

-28-

cursor moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB, or by backspac-
ing when at the beginning of the bottom line, returning the cursor to its initial
position. Searches normally wrap end-around to find a string anywhere in the
buffer.

When used with an operator the enclosed region is normally affected. By men-
tioning an offset from the line matched by the pattern you can force whole lines
to be affected. To do this give a pattern with a closing a closing / and then an
offset +n or −n.

To include the character / in the search string, you must escape it with a preced-
ing \. A ↑ at the beginning of the pattern forces the match to occur at the
beginning of a line only; this speeds the search. A $ at the end of the pattern
forces the match to occur at the end of a line only. More extended pattern
matching is available, see section 7.4; unless you set nomagic in your .exrc file
you will have to preceed the characters . [* and ˜ in the search pattern with a \
to get them to work as you would naively expect (1.5, 2,2, 6.1, 7.2, 7.4).

0 Moves to the first character on the current line. Also used, in forming numbers,
after an initial 1−9.

1−9 Used to form numeric arguments to commands (2.3, 7.2).

: A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with an CR, and
the command then executed. You can return to where you were by hitting DEL

or RUB if you hit : accidentally (see primarily 6.2 and 7.3).

; Repeats the last single character find which used f F t or T. A count iterates
the basic scan (4.1).

< An operator which shifts lines left one shiftwidth, normally 8 spaces. Like all
operators, affects lines when repeated, as in <<. Counts are passed through to
the basic object, thus 3<< shifts three lines (6.6, 7.2).

= Reindents line for LISP, as though they were typed in with lisp and autoindent
set (6.8).

> An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects
lines when repeated as in >>. Counts repeat the basic object (6.6, 7.2).

? Scans backwards, the opposite of /. See the / description above for details on
scanning (2.2, 6.1, 7.4).

@ A macro character (6.9). If this is your kill character, you must escape it with a
\ to type it in during input mode, as it normally backs over the input you have
given on the current line (3.1, 3.4, 7.5).

A Appends at the end of line, a synonym for $a (7.2).

B Backs up a word, where words are composed of non-blank sequences, placing the
cursor at the beginning of the word. A count repeats the effect (2.4).

C Changes the rest of the text on the current line; a synonym for c$.

D Deletes the rest of the text on the current line; a synonym for d$.

E Moves forward to the end of a word, defined as blanks and non-blanks, like B
and W. A count repeats the effect.

F Finds a single following character, backwards in the current line. A count
repeats this search that many times (4.1).

G Goes to the line number given as preceding argument, or the end of the file if no
preceding count is given. The screen is redrawn with the new current line in the
center if necessary (7.2).

-29-

H Home arrow. Homes the cursor to the top line on the screen. If a count is
given, then the cursor is moved to the count’th line on the screen. In any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator, full lines are affected (2.3, 3.2).

I Inserts at the beginning of a line; a synonym for ↑i.
J Joins together lines, supplying appropriate white space: one space between

words, two spaces after a ., and no spaces at all if the first character of the joined
on line is). A count causes that many lines to be joined rather than the default
two (6.5, 7.1f).

K Unused.

L Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-white of the count’th line from the bottom. Oper-
ators affect whole lines when used with L (2.3).

M Moves the cursor to the middle line on the screen, at the first non-white position
on the line (2.3).

N Scans for the next match of the last pattern given to / or ?, but in the reverse
direction; this is the reverse of n.

O Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be opened;
this is generally obsolete, as the slowopen option works better (3.1).

P Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the text
is inserted between the characters before and at the cursor. May be preceded by
a named buffer specification "x to retrieve the contents of the buffer; buffers 1−9
contain deleted material, buffers a−z are available for general use (6.3).

Q Quits from vi to ex command mode. In this mode, whole lines form commands,
ending with a RETURN. You can give all the : commands; the editor supplies the
: as a prompt (7.7).

R Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

S Changes whole lines, a synonym for cc. A count substitutes for that many lines.
The lines are saved in the numeric buffers, and erased on the screen before the
substitution begins.

T Takes a single following character, locates the character before the cursor in the
current line, and places the cursor just after that character. A count repeats the
effect. Most useful with operators such as d (4.1).

U Restores the current line to its state before you started changing it (3.5).

V Unused.

W Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect
(2.4).

X Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Y Yanks a copy of the current line into the unnamed buffer, to be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines.
May be preceded by a buffer name to put lines in that buffer (7.4).

ZZ Exits the editor. (Same as :xCR.) If any changes have been made, the buffer is
written out to the current file. Then the editor quits.

-30-

[[Backs up to the previous section boundary. A section begins at each macro in
the sections option, normally a ‘.NH’ or ‘.SH’ and also at lines which which start
with a formfeed ˆL. Lines beginning with { also stop [[; this makes it useful for
looking backwards, a function at a time, in C programs. If the option lisp is set,
stops at each (at the beginning of a line, and is thus useful for moving back-
wards at the top level LISP objects. (4.2, 6.1, 6.6, 7.2).

\ Unused.

]] Forward to a section boundary, see [[for a definition (4.2, 6.1, 6.6, 7.2).

↑ Moves to the first non-white position on the current line (4.4).

Unused.

` When followed by a ` returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed by
a letter a−z, returns to the position which was marked with this letter with a m
command. When used with an operator such as d, the operation takes place
from the exact marked place to the current position within the line; if you use ´,
the operation takes place over complete lines (2.2, 5.3).

a Appends arbitrary text after the current cursor position; the insert can continue
onto multiple lines by using RETURN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line. The
insertion terminates with an ESC (3.1, 7.2).

b Backs up to the beginning of a word in the current line. A word is a sequence of
alphanumerics, or a sequence of special characters. A count repeats the effect
(2.4).

c An operator which changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text
which is changed away is saved in the numeric named buffers. If only part of the
current line is affected, then the last character to be changed away is marked
with a $. A count causes that many objects to be affected, thus both 3c) and
c3) change the following three sentences (7.4).

d An operator which deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w (3.3, 3.4, 4.1, 7.4).

e Advances to the end of the next word, defined as for b and w. A count repeats
the effect (2.4, 3.1).

f Finds the first instance of the next character following the cursor on the current
line. A count repeats the find (4.1).

g Unused.

Arrow keys h, j, k, l, and H.

h Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or one of the synonyms (ˆH) has the same
effect. On v2 editors, arrow keys on certain kinds of terminals (those which send
escape sequences, such as vt52, c100, or hp) cannot be used. A count repeats the
effect (3.1, 7.5).

i Inserts text before the cursor, otherwise like a (7.2).

j Down arrow. Moves the cursor one line down in the same column. If the posi-
tion does not exist, vi comes as close as possible to the same column. Synonyms
include ˆJ (linefeed) and ˆN.

k Up arrow. Moves the cursor one line up. ˆP is a synonym.

-31-

l Right arrow. Moves the cursor one character to the right. SPACE is a syn-
onym.

m Marks the current position of the cursor in the mark register which is specified
by the next character a−z. Return to this position or use with an operator
using ` or ´ (5.3).

n Repeats the last / or ? scanning commands (2.2).

o Opens new lines below the current line; otherwise like O (3.1).

p Puts text after/below the cursor; otherwise like P (6.3).

q Unused.

r Replaces the single character at the cursor with a single character you type. The
new character may be a RETURN; this is the easiest way to split lines. A count
replaces each of the following count characters with the single character given;
see R above which is the more usually useful iteration of r (3.2).

s Changes the single character under the cursor to the text which follows up to an
ESC; given a count, that many characters from the current line are changed. The
last character to be changed is marked with $ as in c (3.2).

t Advances the cursor upto the character before the next character typed. Most
useful with operators such as d and c to delete the characters up to a following
character. You can use . to delete more if this doesn’t delete enough the first
time (4.1).

u Undoes the last change made to the current buffer. If repeated, will alternate
between these two states, thus is its own inverse. When used after an insert
which inserted text on more than one line, the lines are saved in the numeric
named buffers (3.5).

v Unused.

w Advances to the beginning of the next word, as defined by b (2.4).

x Deletes the single character under the cursor. With a count deletes deletes that
many characters forward from the cursor position, but only on the current line
(6.5).

y An operator, yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification, "x, the text is placed in that buffer
also. Text can be recovered by a later p or P (7.4).

z Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen, . the center of the screen, and
− at the bottom of the screen. A count may be given after the z and before the
following character to specify the new screen size for the redraw. A count before
the z gives the number of the line to place in the center of the screen instead of
the default current line. (5.4)

{ Retreats to the beginning of the beginning of the preceding paragraph. A para-
graph begins at each macro in the paragraphs option, normally ‘.IP’, ‘.LP’, ‘.PP’,
‘.QP’ and ‘.bp’. A paragraph also begins after a completely empty line, and at
each section boundary (see [[above) (4.2, 6.8, 7.6).

| Places the cursor on the character in the column specified by the count (7.1, 7.2).

} Advances to the beginning of the next paragraph. See { for the definition of
paragraph (4.2, 6.8, 7.6).

˜ Unused.

ˆ? (DEL) Interrupts the editor, returning it to command accepting state (1.5, 7.5)

-32-

.

