
The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

ABSTRACT

M4 is a macro processor available on UNIX⃝r and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros are
not adequately powerful. It has also been used for languages as disparate as C
and Cobol. M4 is particularly suited for functional languages like Fortran, PL/I
and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro processors,
including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This paper is a user’s manual for M4.

July 1, 1977

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Introduction

A macro processor is a useful way to
enhance a programming language, to make it
more palatable or more readable, or to tailor
it to a particular application. The #define
statement in C and the analogous define in
Ratfor are examples of the basic facility pro-
vided by any macro processor — replacement
of text by other text.

The M4 macro processor is an extension
of a macro processor called M3 which was
written by D. M. Ritchie for the AP-3 mini-
computer; M3 was in turn based on a macro
processor implemented for [1]. Readers unfa-
miliar with the basic ideas of macro process-
ing may wish to read some of the discussion
there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by another,
it provides macros with arguments, condi-
tional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy its
input to its output. As the input is read,
however, each alphanumeric ‘‘token’’ (that is,
string of letters and digits) is checked. If it is
the name of a macro, then the name of the
macro is replaced by its defining text, and the
resulting string is pushed back onto the input
to be rescanned. Macros may be called with
arguments, in which case the arguments are
collected and substituted into the right places
in the defining text before it is rescanned.

M4 provides a collection of about
twenty built-in macros which perform various
useful operations; in addition, the user can
define new macros. Built-ins and user-defined
macros work exactly the same way, except
that some of the built-in macros have side
effects on the state of the process.

Usage

On UNIX, use

m4 [files]

Each argument file is processed in order; if
there are no arguments, or if an argument is
`−’, the standard input is read at that point.
The processed text is written on the standard
output, which may be captured for subse-
quent processing with

m4 [files] >outputfile

On GCOS, usage is identical, but the program
is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
(the underscore counts as a letter). stuff is
any text that contains balanced parentheses;
it may stretch over multiple lines.

Thus, as a typical example,

define(N, 100)
...
if (i > N)

defines N to be 100, and uses this ``symbolic
constant’’ in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name is
not followed immediately by `(’, it is assumed
to have no arguments. This is the situation
for N above; it is actually a macro with no
arguments, and thus when it is used there
need be no (...) following it.

-2-

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For exam-
ple, in

define(N, 100)
...
if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it contains
a lot of N’s.

Things may be defined in terms of other
things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to
say it another way, is M defined as N or as
100? In M4, the latter is true — M is 100,
so even if N subsequently changes, M does
not.

This behavior arises because M4
expands macro names into their defining text
as soon as it possibly can. Here, that means
that when the string N is seen as the argu-
ments of define are being collected, it is
immediately replaced by 100; it’s just as if
you had said

define(M, 100)

in the first place.

If this isn’t what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange the
order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so
when you ask for M later, you’ll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

Quoting

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ` and ´ is not expanded imme-
diately, but has the quotes stripped off. If
you say

define(N, 100)
define(M, `N´)

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something. This
is true even outside of macros. If you want
the word define to appear in the output, you
have to quote it in the input, as in

`define´ = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)
...
define(N, 200)

Perhaps regrettably, the N in the second defi-
nition is evaluated as soon as it’s seen; that
is, it is replaced by 100, so it’s as if you had
written

define(100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn’t have the effect you
wanted. To really redefine N, you must delay
the evaluation by quoting:

define(N, 100)
...
define(`N´, 200)

In M4, it is often wise to quote the first argu-
ment of a macro.

If ` and ´ are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote([,])

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

changequote

There are two additional built-ins
related to define. undefine removes the def-
inition of some macro or built-in:

undefine(`N´)

removes the definition of N. (Why are the

-3-

quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine(`define´)

but once you remove one, you can never get
it back.

The built-in ifdef provides a way to
determine if a macro is currently defined. In
particular, M4 has pre-defined the names
unix and gcos on the corresponding systems,
so you can tell which one you’re using:

ifdef(`unix´, `define(wordsize,16)´)
ifdef(`gcos´, `define(wordsize,36)´)

makes a definition appropriate for the partic-
ular machine. Don’t forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef is
then the third argument, as in

ifdef(`unix´, on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing — replacing one
string by another (fixed) string. User-defined
macros may also have arguments, so different
invocations can have different results. Within
the replacement text for a macro (the second
argument of its define) any occurrence of $n
will be replaced by the nth argument when
the macro is actually used. Thus, the macro
bump, defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by
1:

bump(x)

is

x = x + 1

A macro can have as many arguments
as you want, but only the first nine are acces-
sible, through $1 to $9. (The macro name
itself is $0, although that is less commonly
used.) Arguments that are not supplied are
replaced by null strings, so we can define a
macro cat which simply concatenates its
arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no correspond-
ing arguments were provided.

Leading unquoted blanks, tabs, or new-
lines that occur during argument collection
are discarded. All other white space is
retained. Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma ``protected’’ by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The sim-
plest is incr, which increments its numeric
argument by 1. Thus to handle the common
programming situation where you want a
variable to be defined as ``one more than N’’,
write

define(N, 100)
define(N1, `incr(N)´)

Then N1 is defined as one more than the cur-
rent value of N.

The more general mechanism for arith-
metic is a built-in called eval, which is capa-
ble of arbitrary arithmetic on integers. It
provides the operators (in decreasing order of
precedence)

unary + and −
∗∗ or ˆ (exponentiation)
∗ / % (modulus)
+ −
== != < <= > >=
! (not)
& or && (logical and)
| or || (logical or)

Parentheses may be used to group operations
where needed. All the operands of an expres-
sion given to eval must ultimately be

-4-

numeric. The numeric value of a true rela-
tion (like 1>0) is 1, and false is 0. The preci-
sion in eval is 32 bits on UNIX and 36 bits on
GCOS.

As a simple example, suppose we want
M to be 2∗∗N+1. Then

define(N, 3)
define(M, `eval(2∗∗N+1)´)

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include(filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value of
include (that is, its replacement text) is the
contents of the file; this can be captured in
definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate form
sinclude can be used; sinclude (``silent
include’’) says nothing and continues if it
can’t access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com-
mand. M4 maintains nine of these diversions,
numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of a
temporary file referred to as n. Diverting to
this file is stopped by another divert com-
mand; in particular, divert or divert(0)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the diver-
sions output in numeric order. It is possible,
however, to bring back diversions at any
time, that is, to append them to the current
diversion.

undivert

brings back all diversions in numeric order,

and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion whose
number is not between 0 and 9 inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd(date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system function
mktemp: a string of XXXXX in the argument
is replaced by the process id of the current
process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c; oth-
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns ``yes’’ or ``no’’ if they
are the same or different.

define(compare, `ifelse($1, $2, yes, no)´)

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result

-5-

is c. Otherwise, if d is the same as e, the
result is f. Otherwise the result is g. If the
final argument is omitted, the result is null,
so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len(abcdef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to pro-
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n characters
long. If n is omitted, the rest of the string is
returned, so

substr(`now is the time´, 1)

is

ow is the time

If i or n are out of range, various sensible
things happen.

index(s1, s2) returns the index (posi-
tion) in s1 where the string s2 occurs, or −1
if it doesn’t occur. As with substr, the ori-
gin for strings is 0.

The built-in translit performs charac-
ter transliteration.

translit(s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding dig-
its. If t is shorter than f, characters which
don’t have an entry in t are deleted; as a lim-
iting case, if t is not present at all, characters
from f are deleted from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which
deletes all characters that follow it up to and
including the next newline; it is useful mainly
for throwing away empty lines that otherwise
tend to clutter up M4 output. For example,

if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part
of the definition, so it is copied into the out-
put, where it may not be wanted. If you add
dnl to each of these lines, the newlines will
disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(−1)
define(...)
...

divert

Printing

The built-in errprint writes its argu-
ments out on the standard error file. Thus
you can say

errprint(`fatal error´)

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don’t forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.

-6-

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef(`name´, `name´, ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdef(`name´, this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(s1, s2)
5 len(string)
4 maketemp(...XXXXX...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine(`name´)
4 undivert(number,number,...)

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug McIlroy, and especially Jim
Weythman, whose pioneering use of M4 has
led to several valuable improvements. We are
also deeply grateful to Weythman for several
substantial contributions to the code.

References

[1] B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, Inc.,
1976.

