
Ex/Edit Command Summary (Version 2.0)
Ex and edit are text editors, used for creating and

modifying files of text on the UNIX computer system.
Edit is a variant of ex with features designed to make it
less complicated to learn and use. In terms of command
syntax and effect the editors are essentially identical, and
this command summary applies to both.

The summary is meant as a quick reference for users
already acquainted with edit or ex. Fuller explanations
of the editors are available in the documents Edit: A
Tutorial (a self-teaching introduction) and the Ex Refer-
ence Manual (the comprehensive reference source for
both edit and ex). Both of these writeups are available
in the Computing Services Library.

In the examples included with the summary, com-
mands and text entered by the user are printed in bold-
face to distinguish them from responses printed by the
computer.

The Editor Buffer
In order to perform its tasks the editor sets aside a

temporary work space, called a buffer, separate from the
user’s permanent file. Before starting to work on an
existing file the editor makes a copy of it in the buffer,
leaving the original untouched. All editing changes are
made to the buffer copy, which must then be written
back to the permanent file in order to update the old
version. The buffer disappears at the end of the editing
session.

Editing: Command and Text Input Modes
During an editing session there are two usual modes

of operation: command mode and text input mode. (This
disregards, for the moment, open and visual modes, dis-
cussed below.) In command mode, the editor issues a
colon prompt (:) to show that it is ready to accept and
execute a command. In text input mode, on the other
hand, there is no prompt and the editor merely accepts
text to be added to the buffer. Text input mode is initi-
ated by the commands append, insert, and change, and is
terminated by typing a period as the first and only char-
acter on a line.

Line Numbers and Command Syntax
The editor keeps track of lines of text in the buffer

by numbering them consecutively starting with 1 and
renumbering as lines are added or deleted. At any given
time the editor is positioned at one of these lines; this
position is called the current line. Generally, commands
that change the contents of the buffer print the new cur-
rent line at the end of their execution.

Most commands can be preceded by one or two line-
number addresses which indicate the lines to be affected.
If one number is given the command operates on that
line only; if two, on an inclusive range of lines. Com-
mands that can take line-number prefixes also assume
default prefixes if none are given. The default assumed
by each command is designed to make it convenient to
use in many instances without any line-number prefix.
For the most part, a command used without a prefix
operates on the current line, though exceptions to this

rule should be noted. The print command by itself, for
instance, causes one line, the current line, to be printed
at the terminal.

The summary shows the number of line addresses
that can be prefixed to each command as well as the
defaults assumed if they are omitted. For example, (.,.)
means that up to 2 line-numbers may be given, and that
if none is given the command operates on the current
line. (In the address prefix notation, ‘‘.’’ stands for the
current line and ‘‘$’’ stands for the last line of the
buffer.) If no such notation appears, no line-number pre-
fix may be used.

Some commands take trailing information; only the
more important instances of this are mentioned in the
summary.

Open and Visual Modes
Besides command and text input modes, ex and edit

provide on some CRT terminals other modes of editing,
open and visual. In these modes the cursor can be
moved to individual words or characters in a line. The
commands then given are very different from the stan-
dard editor commands; most do not appear on the screen
when typed. An Introduction to Display Editing with Vi
provides a full discussion.

Special Characters
Some characters take on special meanings when used

in context searches and in patterns given to the substi-
tute command. For edit, these are ‘‘ˆ’’ and ‘‘$’’, meaning
the beginning and end of a line, respectively. Ex has the
following additional special characters:

. & * [] ˜
To use one of the special characters as its simple graphic
representation rather than with its special meaning, pre-
cede it by a backslash (\). The backslash always has a
special meaning.

Computing Services, U.C. Berkeley April 3, 1979

Name Abbr Description Examples

(.)append a Begins text input mode, adding lines to the buffer
after the line specified. Appending continues until ‘‘.’’
is typed alone at the beginning of a new line, followed
by a carriage return. 0a places lines at the beginning
of the buffer.

:a
Three lines of text
are added to the buffer
after the current line.
.
:

(.,.)change c Deletes indicated line(s) and initiates text input mode
to replace them with new text which follows. New
text is terminated the same way as with append.

:5,6c
Lines 5 and 6 are
deleted and replaced by
these three lines.
.
:

(.,.)copy addr co Places a copy of the specified lines after the line indi-
cated by addr. The example places a copy of lines 8
through 12, inclusive, after line 25.

:8,12co 25
Last line copied is printed
:

(.,.)delete d Removes lines from the buffer and prints the current
line after the deletion.

:13,15d
New current line is printed
:

edit file
edit! file

e
e!

Clears the editor buffer and then copies into it the
named file, which becomes the current file. This is a
way of shifting to a different file without leaving the
editor. The editor issues a warning message if this
command is used before saving changes made to the
file already in the buffer; using the form e! overrides
this protective mechanism.

:e ch10
No write since last change
:e! ch10
"ch10" 3 lines, 62 characters
:

file name f If followed by a name, renames the current file to
name. If used without name, prints the name of the
current file.

:f ch9
"ch9" [Modified] 3 lines ...
:f
"ch9" [Modified] 3 lines ...
:

(1,$)global g global/pattern/commands
(1,$)global! g! or v Searches the entire buffer (unless a smaller range is

specified by line-number prefixes) and executes com-
mands on every line with an expression matching pat-
tern. The second form, abbreviated either g! or v,
executes commands on lines that do not contain the
expression pattern.

:g/nonsense/d
:

(.)insert i Inserts new lines of text immediately before the speci-
fied line. Differs from append only in that text is
placed before, rather than after, the indicated line. In
other words, 1i has the same effect as 0a.

:1i
These lines of text will
be added prior to line 1.
.
:

(.,.+1)join j Join lines together, adjusting white space (spaces and
tabs) as necessary.

:2,5j
Resulting line is printed
:

Name Abbr Description Examples

(.,.)list l Prints lines in a more unambiguous way than the print
command does. The end of a line, for example, is
marked with a ‘‘$’’, and tabs printed as ‘‘ˆI’’.

:9l
This is line 9$
:

(.,.)move addr m Moves the specified lines to a position after the line
indicated by addr.

:12,15m 25
New current line is printed
:

(.,.)number nu Prints each line preceded by its buffer line number. :nu
10 This is line 10

:

(.)open o Too involved to discuss here, but if you enter open
mode accidentally, press the ESC key followed by q to
get back into normal editor command mode. Edit is
designed to prevent accidental use of the open com-
mand.

preserve pre Saves a copy of the current buffer contents as though
the system had just crashed. This is for use in an
emergency when a write command has failed and you
don’t know how else to save your work.†

:preserve
File preserved.
:

(.,.)print p Prints the text of line(s). :+2,+3p
The second and third lines
after the current line
:

quit
quit!

q
q!

Ends the editing session. You will receive a warning if
you have changed the buffer since last writing its con-
tents to the file. In this event you must either type w
to write, or type q! to exit from the editor without
saving your changes.

:q
No write since last change
:q!
%

(.)read file r Places a copy of file in the buffer after the specified
line. Address 0 is permissible and causes the copy of
file to be placed at the beginning of the buffer. The
read command does not erase any text already in the
buffer. If no line number is specified, file is placed
after the current line.

:0r newfile
"newfile" 5 lines, 86 characters
:

recover file rec Retrieves a copy of the editor buffer after a system
crash, editor crash, phone line disconnection, or pre-
serve command.

(.,.)substitute s substitute/pattern/replacement/
substitute/pattern/replacement/gc
Replaces the first occurrence of pattern on a line with
replacement. Including a g after the command
changes all occurrences of pattern on the line. The c
option allows the user to confirm each substitution
before it is made; see the manual for details.

:3p
Line 3 contains a misstake
:s/misstake/mistake/
Line 3 contains a mistake
:

† Seek assistance from a consultant as soon as possible after saving a file with the preserve command, because the

file is saved on system storage space for only one week.

Name Abbr Description Examples

undo u Reverses the changes made in the buffer by the last
buffer-editing command. Note that this example con-
tains a notification about the number of lines affected.

:1,15d
15 lines deleted
new line number 1 is printed
:u
15 more lines in file ...
old line number 1 is printed
:

(1,$)write file w
(1,$)write! file w!

Copies data from the buffer onto a permanent file. If
no file is named, the current filename is used. The file
is automatically created if it does not yet exist. A
response containing the number of lines and characters
in the file indicates that the write has been completed
successfully. The editor’s built-in protections against
overwriting existing files will in some circumstances
inhibit a write. The form w! forces the write, con-
firming that an existing file is to be overwritten.

:w
"file7" 64 lines, 1122 characters
:w file8
"file8" File exists ...
:w! file8
"file8" 64 lines, 1122 characters
:

(.)z count z Prints a screen full of text starting with the line indi-
cated; or, if count is specified, prints that number of
lines. Variants of the z command are described in the
manual.

!command Executes the remainder of the line after ! as a UNIX

command. The buffer is unchanged by this, and con-
trol is returned to the editor when the execution of
command is complete.

:!date
Fri Jun 9 12:15:11 PDT 1978
!
:

control-d Prints the next scroll of text, normally half of a
screen. See the manual for details of the scroll option.

(.+1)<cr> An address alone followed by a carriage return causes
the line to be printed. A carriage return by itself
prints the line following the current line.

:<cr>
the line after the current line
:

/pattern/ Searches for the next line in which pattern occurs and
prints it.

:/This pattern/
This pattern next occurs here.
:

// Repeats the most recent search. ://
This pattern also occurs here.
:

?pattern? Searches in the reverse direction
for pattern.

?? Repeats the most recent search,
moving in the reverse direction
through the buffer.

