
Ex Reference Manual

Version 3.5/2.13 −− September, 1980

William Joy

Revised for versions 3.5/2.13 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Ex a line oriented text editor, which supports both command and display
oriented editing. This reference manual describes the command oriented part of
ex; the display editing features of ex are described in An Introduction to Display
Editing with Vi. Other documents about the editor include the introduction Edit:
A tutorial, the Ex/edit Command Summary, and a Vi Quick Reference card.

6 April 1993

Ex Reference Manual

Version 3.5/2.13 −− September, 1980

William Joy

Revised for versions 3.5/2.13 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

1. Starting ex

Each instance of the editor has a set of options, which can be set to tailor it to your liking.
The command edit invokes a version of ex designed for more casual or beginning users by changing
the default settings of some of these options. To simplify the description which follows we assume
the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environment.
It there is a TERMCAP variable in the environment, and the type of the terminal described there
matches the TERM variable, then that description is used. Also if the TERMCAP variable contains
a pathname (beginning with a /) then the editor will seek the description of the terminal in that
file (rather than the default /etc/termcap.) If there is a variable EXINIT in the environment, then
the editor will execute the commands in that variable, otherwise if there is a file .exrc in your
HOME directory ex reads commands from that file, simulating a source command. Option setting
commands placed in EXINIT or .exrc will be executed before each editor session.

A command to enter ex has the following prototype:†

ex [−−] [−−v] [−−t tag] [−−r] [−−l] [−−wn] [−−x] [−−R] [+command] name ...

The most common case edits a single file with no options, i.e.:

ex name

The −− command line option option suppresses all interactive-user feedback and is useful in pro-
cessing editor scripts in command files. The −−v option is equivalent to using vi rather than ex.
The −−t option is equivalent to an initial tag command, editing the file containing the tag and
positioning the editor at its definition. The −−r option is used in recovering after an editor or sys-
tem crash, retrieving the last saved version of the named file or, if no file is specified, typing a list
of saved files. The −−l option sets up for editing LISP, setting the showmatch and lisp options.
The −−w option sets the default window size to n, and is useful on dialups to start in small win-
dows. The −−x option causes ex to prompt for a key, which is used to encrypt and decrypt the
contents of the file, which should already be encrypted using the same key, see crypt(1). The −−R
option sets the readonly option at the start. ‡ Name arguments indicate files to be edited. An
argument of the form +command indicates that the editor should begin by executing the specified
command. If command is omitted, then it defaults to ‘‘$’’, positioning the editor at the last line of
the first file initially. Other useful commands here are scanning patterns of the form ‘‘/pat’’ or

The financial support of an IBM Graduate Fellowship and the National Science Foundation under

grants MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.

† Brackets ‘[’ ‘]’ surround optional parameters here.

‡ Not available in all v2 editors due to memory constraints.

-2-

line numbers, e.g. ‘‘+100’’ starting at line 100.

2. File manipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the current file
name. Ex performs all editing actions in a buffer (actually a temporary file) into which the text of
the file is initially read. Changes made to the buffer have no effect on the file being edited unless
and until the buffer contents are written out to the file with a write command. After the buffer
contents are written, the previous contents of the written file are no longer accessible. When a file
is edited, its name becomes the current file name, and its contents are read into the buffer.

The current file is almost always considered to be edited. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not edited then
ex will not normally write on it if it already exists.*

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is
saved as the alternate file name. Similarly if a file is mentioned but does not become the current
file, it is saved as the alternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conventions.
In addition, the character ‘%’ in filenames is replaced by the current file name and the character
‘#’ by the alternate file name.†

2.4. Multiple files and named buffers

If more than one file is given on the command line, then the first file is edited as described
above. The remaining arguments are placed with the first file in the argument list. The current
argument list may be displayed with the args command. The next file in the argument list may
be edited with the next command. The argument list may also be respecified by specifying a list
of names to the next command. These names are expanded, the resulting list of names becomes
the new argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file, ex
has a group of named buffers. These are similar to the normal buffer, except that only a limited
number of operations are available on them. The buffers have names a through z.‡

2.5. Read only

It is possible to use ex in read only mode to look at files that you have no intention of modi-
fying. This mode protects you from accidently overwriting the file. Read only mode is on when
the readonly option is set. It can be turned on with the −−R command line option, by the view
command line invocation, or by setting the readonly option. It can be cleared by setting noread-
only. It is possible to write, even while in read only mode, by indicating that you really know
what you are doing. You can write to a different file, or can use the ! form of write, even while in
read only mode.

* The file command will say ‘‘[Not edited]’’ if the current file is not considered edited.

† This makes it easy to deal alternately with two files and eliminates the need for retyping the name

supplied on an edit command after a No write since last change diagnostic is received.

‡ It is also possible to refer to A through Z; the upper case buffers are the same as the lower but com-

mands append to named buffers rather than replacing if upper case names are used.

-3-

3. Exceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error
diagnostic. If the primary input is from a file, editor processing will terminate. If an interrupt
signal is received, ex prints ‘‘Interrupt’’ and returns to its command level. If the primary input is
a file, then ex will exit when this occurs.

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written out,
or if the system crashes, either the editor (in the first case) or the system (after it reboots in the
second) will attempt to preserve the buffer. The next time you log in you should be able to
recover the work you were doing, losing at most a few lines of changes from the last point before
the hangup or editor crash. To recover a file you can use the −−r option. If you were editing the
file resume, then you should change to the directory where you were when the crash occurred, giv-
ing the command

ex −−r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

ex −r

will print a list of the files which have been saved for you. (In the case of a hangup, the file will
not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered
in command mode when a ‘:’ prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append, insert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. This mode is left by typing a ‘.’ alone at the beginning of a line, and command mode
resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow local
editing operations to be performed on the text in the file. The open command displays one line at
a time on any terminal while visual works on CRT terminals with random positioning cursors,
using the screen as a (single) window for file editing changes. These modes are described (only) in
An Introduction to Display Editing with Vi.

5. Command structure

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.*

5.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they are
to have effect. The forms of these addresses will be discussed below. A number of commands also

* As an example, the command substitute can be abbreviated ‘s’ while the shortest available abbrevia-

tion for the set command is ‘se’.

-4-

may take a trailing count specifying the number of lines to be involved in the command.† Thus
the command ‘‘10p’’ will print the tenth line in the buffer while ‘‘delete 5’’ will delete five lines
from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being given
after the command name.‡

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an ‘!’ immediately after the command name. Some of the default variants may
be controlled by options; in this case, the ‘!’ serves to toggle the default.

5.3. Flags after commands

The characters ‘#’, ‘p’ and ‘l’ may be placed after many commands.** In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, ‘p’ is rarely necessary. Any number of ‘+’
or ‘−’ characters may also be given with these flags. If they appear, the specified offset is applied
to the current line value before the printing command is executed.

5.4. Comments

It is possible to give editor commands which are ignored. This is useful when making com-
plex editor scripts for which comments are desired. The comment character is the double quote:
". Any command line beginning with " is ignored. Comments beginning with " may also be
placed at the ends of commands, except in cases where they could be confused as part of text
(shell escapes and the substitute and map commands).

5.5. Multiple commands per line

More than one command may be placed on a line by separating each pair of commands by a
‘|’ character. However the global commands, comments, and the shell escape ‘!’ must be the last
command on a line, as they are not terminated by a ‘|’.

5.6. Reporting large changes

Most commands which change the contents of the editor buffer give feedback if the scope of
the change exceeds a threshold given by the report option. This feedback helps to detect undesir-
ably large changes so that they may be quickly and easily reversed with an undo. After com-
mands with more global effect such as global or visual, you will be informed if the net change in
the number of lines in the buffer during this command exceeds this threshold.

6. Command addressing

6.1. Addressing primitives

. The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the current
line, thus ‘.’ is rarely used alone as an address.

n The nth line in the editor’s buffer, lines being numbered sequentially from
1.

$ The last line in the buffer.

† Counts are rounded down if necessary.

‡ Examples would be option names in a set command i.e. ‘‘set number’’, a file name in an edit com-

mand, a regular expression in a substitute command, or a target address for a copy command, i.e. ‘‘1,5

copy 25’’.

** A ‘p’ or ‘l’ must be preceded by a blank or tab except in the single special case ‘dp’.

-5-

% An abbreviation for ‘‘1,$’’, the entire buffer.

+n −n An offset relative to the current buffer line.†
/pat/ ?pat? Scan forward and backward respectively for a line containing pat, a regular

expression (as defined below). The scans normally wrap around the end of
the buffer. If all that is desired is to print the next line containing pat,
then the trailing / or ? may be omitted. If pat is omitted or explicitly
empty, then the last regular expression specified is located.‡

´´ ´x Before each non-relative motion of the current line ‘.’, the previous current
line is marked with a tag, subsequently referred to as ‘´´’. This makes it
easy to refer or return to this previous context. Marks may also be estab-
lished by the mark command, using single lower case letters x and the
marked lines referred to as ‘´x’.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ‘,’ or ‘;’.
Such address lists are evaluated left-to-right. When addresses are separated by ‘;’ the current line
‘.’ is set to the value of the previous addressing expression before the next address is interpreted.
If more addresses are given than the command requires, then all but the last one or two are
ignored. If the command takes two addresses, the first addressed line must precede the second in
the buffer.†

7. Command descriptions

The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ‘‘:’’ preceding any command.

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as a complete word, it will be changed to rhs.

(.) append abbr: a
text
.

Reads the input text and places it after the specified line. After the command, ‘.’ addresses
the last line input or the specified line if no lines were input. If address ‘0’ is given, text is
placed at the beginning of the buffer.

a!
text
.

† The forms ‘.+3’ ‘+3’ and ‘+++’ are all equivalent; if the current line is line 100 they all address line

103.

‡ The forms \\/ and \\? scan using the last regular expression used in a scan; after a substitute // and

?? would scan using the substitute’s regular expression.

† Null address specifications are permitted in a list of addresses, the default in this case is the current

line ‘.’; thus ‘,100’ is equivalent to ‘.,100’. It is an error to give a prefix address to a command which

expects none.

-6-

The variant flag to append toggles the setting for the autoindent option during the input of
text.

args

The members of the argument list are printed, with the current argument delimited by ‘[’
and ‘]’.

(. , .) change count abbr: c
text
.

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

c!
text
.

The variant toggles autoindent during the change.

(. , .) copy addr flags abbr: co

A copy of the specified lines is placed after addr, which may be ‘0’. The current line ‘.’
addresses the last line of the copy. The command t is a synonym for copy.

(. , .)delete buffer count flags abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end, the new last line becomes the cur-
rent line. If a named buffer is specified by giving a letter, then the specified lines are saved
in that buffer, or appended to it if an upper case letter is used.

edit file abbr: e
ex file

Used to begin an editing session on a new file. The editor first checks to see if the buffer has
been modified since the last write command was issued. If it has been, a warning is issued
and the command is aborted. The command otherwise deletes the entire contents of the edi-
tor buffer, makes the named file the current file and prints the new filename. After insuring
that this file is sensible† the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non-ASCII
high bits, and any null characters in the file are discarded. If none of these errors occurred,
the file is considered edited. If the last line of the input file is missing the trailing newline
character, it will be supplied and a complaint will be issued. This command leaves the cur-
rent line ‘.’ at the last line read.‡

e! file

The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

† I.e., that it is not a binary file such as a directory, a block or character special file other than

/dev/tty, a terminal, or a binary or executable file (as indicated by the first word).

‡ If executed from within open or visual, the current line is initially the first line of the file.

-7-

e +n file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g.: ‘‘+/pat’’.

file abbr: f

Prints the current file name, whether it has been ‘[Modified]’ since the last write command,
whether it is read only, the current line, the number of lines in the buffer, and the percent-
age of the way through the buffer of the current line.*

file file

The current file name is changed to file which is considered ‘[Not edited]’.

(1 , $) global /pat / cmds abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with ‘.’ initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a ‘\’. If cmds (and possi-
bly the trailing / delimiter) is omitted, each line matching pat is printed. Append, insert,
and change commands and associated input are permitted; the ‘.’ terminating input may be
omitted if it would be on the last line of the command list. Open and visual commands are
permitted in the command list and take input from the terminal.

The global command itself may not appear in cmds. The undo command is also not permit-
ted there, as undo instead can be used to reverse the entire global command. The options
autoprint and autoindent are inhibited during a global, (and possibly the trailing / delimiter)
and the value of the report option is temporarily infinite, in deference to a report for the
entire global. Finally, the context mark ‘´´’ is set to the value of ‘.’ before the global com-
mand begins and is not changed during a global command, except perhaps by an open or
visual within the global.

g! /pat/ cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(.) insert abbr: i
text
.

Places the given text before the specified line. The current line is left at the last line input;
if there were none input it is left at the line before the addressed line. This command differs
from append only in the placement of text.

i!
text
.

The variant toggles autoindent during the insert.

(. , .+1) join count flags abbr: j

Places the text from a specified range of lines together on one line. White space is adjusted
at each junction to provide at least one blank character, two if there was a ‘.’ at the end of
the line, or none if the first following character is a ‘)’. If there is already white space at the
end of the line, then the white space at the start of the next line will be discarded.

* In the rare case that the current file is ‘[Not edited]’ this is noted also; in this case you have to use

the form w! to write to the file, since the editor is not sure that a write will not destroy a file unre-

lated to the current contents of the buffer.

-8-

j!

The variant causes a simpler join with no white space processing; the characters in the lines
are simply concatenated.

(.) k x

The k command is a synonym for mark. It does not require a blank or tab before the follow-
ing letter.

(. , .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as ‘ˆI’ and the end of
each line is marked with a trailing ‘$’. The current line is left at the last line printed.

map lhs rhs

The map command is used to define macros for use in visual mode. Lhs should be a single
character, or the sequence ‘‘#n’’, for n a digit, referring to function key n. When this char-
acter or function key is typed in visual mode, it will be as though the corresponding rhs had
been typed. On terminals without function keys, you can type ‘‘#n’’. See section 6.9 of the
‘‘Introduction to Display Editing with Vi’’ for more details.

(.) mark x

Gives the specified line mark x, a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form ‘´x’ then addresses this line. The current line is not
affected by this command.

(. , .) move addr abbr: m

The move command repositions the specified lines to be after addr. The first of the moved
lines becomes the current line.

next abbr: n

The next file from the command line argument list is edited.

n!

The variant suppresses warnings about the modifications to the buffer not having been writ-
ten out, discarding (irretrievably) any changes which may have been made.

n filelist
n +command filelist

The specified filelist is expanded and the resulting list replaces the current argument list; the
first file in the new list is then edited. If command is given (it must contain no spaces), then
it is executed after editing the first such file.

(. , .) number count flags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at the
last line printed.

(.) open flags abbr: o
(.) open /pat / flags

Enters intraline editing open mode at each addressed line. If pat is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An Introduction to Display Editing with Vi for more details.
‡

‡ Not available in all v2 editors due to memory constraints.

-9-

preserve

The current editor buffer is saved as though the system had just crashed. This command is
for use only in emergencies when a write command has resulted in an error and you don’t
know how to save your work. After a preserve you should seek help.

(. , .)print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters ‘ˆx ’;
delete (octal 177) is represented as ‘ˆ?’. The current line is left at the last line printed.

(.)put buffer abbr: pu

Puts back previously deleted or yanked lines. Normally used with delete to effect movement
of lines, or with yank to effect duplication of lines. If no buffer is specified, then the last
deleted or yanked text is restored.* By using a named buffer, text may be restored that was
saved there at any previous time.

quit abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed. How-
ever, ex issues a warning message if the file has changed since the last write command was
issued, and does not quit.† Normally, you will wish to save your changes, and you should
give a write command; if you wish to discard them, use the q! command variant.

q!

Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If no
file is given the current file name is used. The current file name is not changed unless there
is none in which case file becomes the current name. The sensibility restrictions for the edit
command apply here also. If the file buffer is empty and there is no current name then ex
treats this as an edit command.

Address ‘0’ is legal for this command and causes the file to be read at the beginning of the
buffer. Statistics are given as for the edit command when the read successfully terminates.
After a read the current line is the last line read.‡

(.) read !command

Reads the output of the command command into the buffer after the specified line. This is
not a variant form of the command, rather a read specifying a command rather than a file-
name; a blank or tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone** or a
system crash** or preserve command. Except when you use preserve you will be notified by
mail when a file is saved.

* But no modifying commands may intervene between the delete or yank and the put, nor may lines

be moved between files without using a named buffer.

† Ex will also issue a diagnostic if there are more files in the argument list.

‡ Within open and visual the current line is set to the first line read rather than the last.

** The system saves a copy of the file you were editing only if you have made changes to the file.

-10-

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a ‘?’ causes the current value of that option to be
printed. The ‘?’ is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form ‘set option’ to turn them on or ‘set nooption’ to turn them
off; string and numeric options are assigned via the form ‘set option=value’.

More than one parameter may be given to set ; they are interpreted left-to-right.

shell abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be nested.

(. , .) substitute /pat /repl / options count flags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character ‘g’ appears, then all instances are substituted; if
the confirm indication character ‘c’ appears, then before each substitution the line to be sub-
stituted is typed with the string to be substituted marked with ‘↑’ characters. By typing an
‘y’ one can cause the substitution to be performed, any other input causes no change to take
place. After a substitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in repl must
be escaped by preceding it with a ‘\’. Other metacharacters available in pat and repl are
described below.

stop

Suspends the editor, returning control to the top level shell. If autowrite is set and there are
unsaved changes, a write is done first unless the form stop! is used. This commands is only
available where supported by the teletype driver and operating system.

(. , .) substitute options count flags abbr: s

If pat and repl are omitted, then the last substitution is repeated. This is a synonym for the
& command.

(. , .) t addr flags

The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the cur-
rent file where it is defined, or if necessary to another file.‡
The tags file is normally created by a program such as ctags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the tag,

‡ If you have modified the current file before giving a tag command, you must write it out; giving

another tag command, specifying no tag will reuse the previous tag.

-11-

the second the name of the file where the tag resides, and the third gives an addressing form
which can be used by the editor to find the tag; this field is usually a contextual scan using
‘/pat/’ to be immune to minor changes in the file. Such scans are always performed as if
nomagic was set.

The tag names in the tags file must be sorted alphabetically. ‡

unabbreviate word abbr: una

Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are open and
visual.) Also, the commands write and edit which interact with the file system cannot be
undone. Undo is its own inverse.

Undo always marks the previous value of the current line ‘.’ as ‘´´’. After an undo the cur-
rent line is the first line restored or the line before the first line deleted if no lines were
restored. For commands with more global effect such as global and visual the current line
regains it’s pre-command value after an undo.

unmap lhs

The macro expansion associated by map for lhs is removed.

(1 , $) v /pat / cmds

A synonym for the global command variant g!, running the specified cmds on each line which
does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed.

(.) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be ‘−’ , ‘↑’ or ‘.’ as in
the z command to specify the placement of the specified line on the screen. By default, if
type is omitted, the specified line is placed as the first on the screen. A count specifies an
initial window size; the default is the value of the option window. See the document An
Introduction to Display Editing with Vi for more details. To exit this mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1 , $) write file abbr: w

Writes changes made back to file, printing the number of lines and characters written. Nor-
mally file is omitted and the text goes back where it came from. If a file is specified, then
text will be written to that file.* If the file does not exist it is created. The current file
name is changed only if there is no current file name; the current line is never changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been ‘‘No write since last change’’ even if the buffer had not previously been modified.

‡ Not available in all v2 editors due to memory constraints.

* The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the

file is actually a teletype, /dev/tty, /dev/null. Otherwise, you must give the variant form w! to force

the write.

-12-

(1 , $) write>> file abbr: w>>

Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1 , $) w !command

Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name

Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changes have been made and not written, writes the buffer out. Then, in any case,
quits.

(. , .)yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer name is
specified, the lines go to a more volatile place; see the put command description.

(.+1) z count

Print the next count lines, default window.

(.) z type count

Prints a window of text with the specified line at the top. If type is ‘−’ the line is placed at
the bottom; a ‘.’ causes the line to be placed in the center.* A count gives the number of
lines to be displayed rather than double the number specified by the scroll option. On a CRT

the screen is cleared before display begins unless a count which is less than the screen size is
given. The current line is left at the last line printed.

! command

The remainder of the line after the ‘!’ character is sent to a shell to be executed. Within the
text of command the characters ‘%’ and ‘#’ are expanded as in filenames and the character
‘!’ is replaced with the text of the previous command. Thus, in particular, ‘!!’ repeats the
last such shell escape. If any such expansion is performed, the expanded line will be echoed.
The current line is unchanged by this command.

If there has been ‘‘[No write]’’ of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning. A
single ‘!’ is printed when the command completes.

* Forms ‘z=’ and ‘z↑’ also exist; ‘z=’ places the current line in the center, surrounds it with lines of

‘−’ characters and leaves the current line at this line. The form ‘z↑’ prints the window before ‘z−’

would. The characters ‘+’, ‘↑’ and ‘−’ may be repeated for cumulative effect. On some v2 editors, no

type may be given.

-13-

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command; the result-
ing output then replaces the input lines.

($) =

Prints the line number of the addressed line. The current line is unchanged.

(. , .) > count flags
(. , .) < count flags

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The quan-
tity of shift is determined by the shiftwidth option and the repetition of the specification
character. Only white space (blanks and tabs) is shifted; no non-white characters are dis-
carded in a left-shift. The current line becomes the last line which changed due to the shift-
ing.

ˆD

An end-of-file from a terminal input scrolls through the file. The scroll option specifies the
size of the scroll, normally a half screen of text.

(.+1 , .+1)
(.+1 , .+1) |

An address alone causes the addressed lines to be printed. A blank line prints the next line
in the file.

(. , .) & options count flags

Repeats the previous substitute command.

(. , .) ˜ options count flags

Replaces the previous regular expression with the previous replacement pattern from a sub-
stitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters. A member of this set of strings
is said to be matched by the regular expression. Ex remembers two previous regular expressions:
the previous regular expression used in a substitute command and the previous regular expression
used elsewhere (referred to as the previous scanning regular expression.) The previous regular
expression can always be referred to by a null re, e.g. ‘//’ or ‘??’.

8.2. Magic and nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on the
setting of the magic option. The ex and vi default setting of magic gives quick access to a power-
ful set of regular expression metacharacters. The disadvantage of magic is that the user must
remember that these metacharacters are magic and precede them with the character ‘\’ to use
them as ‘‘ordinary’’ characters. With nomagic, the default for edit, regular expressions are much
simpler, there being only two metacharacters. The power of the other metacharacters is still avail-
able by preceding the (now) ordinary character with a ‘\’. Note that ‘\’ is thus always a
metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of this
option is magic.†

-14-

8.3. Basic regular expression summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters ‘↑’ at the beginning of a
line, ‘$’ at the end of line, ‘*’ as any character other than the first, ‘.’, ‘\’, ‘[’, and
‘˜’ are not ordinary characters and must be escaped (preceded) by ‘\’ to be
treated as such.

↑↑ At the beginning of a pattern forces the match to succeed only at the beginning
of a line.

$ At the end of a regular expression forces the match to succeed only at the end of
the line.

. Matches any single character except the new-line character.

\\< Forces the match to occur only at the beginning of a ‘‘variable’’ or ‘‘word’’; that
is, either at the beginning of a line, or just before a letter, digit, or underline and
after a character not one of these.

\\> Similar to ‘\<’, but matching the end of a ‘‘variable’’ or ‘‘word’’, i.e. either the
end of the line or before character which is neither a letter, nor a digit, nor the
underline character.

[string] Matches any (single) character in the class defined by string. Most characters in
string define themselves. A pair of characters separated by ‘−’ in string defines
the set of characters collating between the specified lower and upper bounds,
thus ‘[a−z]’ as a regular expression matches any (single) lower-case letter. If the
first character of string is an ‘↑’ then the construct matches those characters
which it otherwise would not; thus ‘[↑a−z]’ matches anything but a lower-case
letter (and of course a newline). To place any of the characters ‘↑’, ‘[’, or ‘−’ in
string you must escape them with a preceding ‘\’.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the (single character matching) regular expressions mentioned
above may be followed by the character ‘*’ to form a regular expression which matches any
number of adjacent occurrences (including 0) of characters matched by the regular expression it
follows.

The character ‘˜’ may be used in a regular expression, and matches the text which defined
the replacement part of the last substitute command. A regular expression may be enclosed
between the sequences ‘\(’ and ‘\)’ with side effects in the substitute replacement patterns.

8.5. Substitute replacement patterns

The basic metacharacters for the replacement pattern are ‘&’ and ‘˜’; these are given as ‘\&’
and ‘\˜’ when nomagic is set. Each instance of ‘&’ is replaced by the characters which the regular
expression matched. The metacharacter ‘˜’ stands, in the replacement pattern, for the defining
text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character ‘\’. The sequence ‘\n’ is replaced by the text matched by the n-th regular
subexpression enclosed between ‘\(’ and ‘\)’.† The sequences ‘\u’ and ‘\l’ cause the immediately

† To discern what is true with nomagic it suffices to remember that the only special characters in this

case will be ‘↑’ at the beginning of a regular expression, ‘$’ at the end of a regular expression, and ‘\’.
With nomagic the characters ‘˜’ and ‘&’ also lose their special meanings related to the replacement

pattern of a substitute.

† When nested, parenthesized subexpressions are present, n is determined by counting occurrences of

‘\(’ starting from the left.

-15-

following character in the replacement to be converted to upper- or lower-case respectively if this
character is a letter. The sequences ‘\U’ and ‘\L’ turn such conversion on, either until ‘\E’ or ‘\e’
is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of each
append, change or insert command or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual mode, ex looks at the line being
appended after, the first line changed or the line inserted before and calculates the amount
of white space at the start of the line. It then aligns the cursor at the level of indentation so
determined.

If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following line
will start aligned with the first non-white character of the previous line. To back the cursor
up to the preceding tab stop one can hit ˆD. The tab stops going backwards are defined at
multiples of the shiftwidth option. You cannot backspace over the indent, except by sending
an end-of-file with a ˆD.

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the autoindent is discarded.) Also spe-
cially processed in this mode are lines beginning with an ‘↑’ and immediately followed by a
ˆD. This causes the input to be repositioned at the beginning of the line, but retaining the
previous indent for the next line. Similarly, a ‘0’ followed by a ˆD repositions at the begin-
ning but without retaining the previous indent.

Autoindent doesn’t happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy, join, move, substitute, t, undo
or shift command. This has the same effect as supplying a trailing ‘p’ to each such com-
mand. Autoprint is suppressed in globals, and only applies to the last of many commands
on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it and
give a next, rewind, stop, tag, or ! command, or a ˆ↑↑ (switch files) or ˆ] (tag goto) com-
mand in visual. Note, that the edit and ex commands do not autowrite. In each case, there
is an equivalent way of switching when autowrite is set to avoid the autowrite (edit for next,
rewind! for .I rewind , stop! for stop, tag! for tag, shell for !, and :e # and a :ta! command
from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beautify
does not apply to command input.

directory, dir default: dir=/tmp

Specifies the directory in which ex places its buffer file. If this directory in not writable,
then the editor will exit abruptly when it fails to be able to create its buffer there.

-16-

edcompatible default: noedcompatible

Causes the presence of absence of g and c suffixes on substitute commands to be remem-
bered, and to be toggled by repeating the suffices. The suffix r makes the substitution be as
in the ˜ command, instead of like &. ‡‡

errorbells, eb default: noeb

Error messages are preceded by a bell.* If possible the editor always places the error mes-
sage in a standout mode of the terminal (such as inverse video) instead of ringing the bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

All upper case characters in the text are mapped to lower case in regular expression match-
ing. In addition, all upper case characters in regular expressions are mapped to lower case
except in character class specifications.

lisp default: nolisp

Autoindent indents appropriately for lisp code, and the () {{ }} [[and]] commands in open
and visual are modified to have meaning for lisp.

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines as in
the list command.

magic default: magic for ex and vi†
If nomagic is set, the number of regular expression metacharacters is greatly reduced, with
only ‘↑’ and ‘$’ having special effects. In addition the metacharacters ‘˜’ and ‘&’ of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a ‘\’.

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomesg is set. ‡‡

number, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and visual are not permitted. This is set for edit to prevent
confusion resulting from accidental entry to open or visual mode.

‡‡ Version 3 only.

* Bell ringing in open and visual on errors is not suppressed by setting noeb.

† Nomagic for edit.

‡‡ Version 3 only.

-17-

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage returns
when printing more than one (logical) line of output, greatly speeding output on terminals
without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP LIbp

Specifies the paragraphs for the {{ and }} operations in open and visual. The pairs of charac-
ters in the option’s value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a ‘:’.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb ter-
minal (e.g. during insertions in visual the characters to the right of the cursor position are
refreshed as each input character is typed.) Useful only at very high speed.

remap default: remap

If on, macros are repeatedly tried until they are unchanged. ‡‡ For example, if o is mapped
to O, and O is mapped to I, then if remap is set, o will map to I, but if noremap is set, it
will map to O.

report default: report=5†
Specifies a threshold for feedback from commands. Any command which modifies more than
the specified number of lines will provide feedback as to the scope of its changes. For com-
mands such as global, open, undo, and visual which have potentially more far reaching scope,
the net change in the number of lines in the buffer is presented at the end of the command,
subject to this same threshold. Thus notification is suppressed during a global command on
the individual commands performed.

scroll default: scroll=1/2 window

Determines the number of logical lines scrolled when an end-of-file is received from a termi-
nal input in command mode, and the number of lines printed by a command mode z com-
mand (double the value of scroll).

sections default: sections=SHNHH HU

Specifies the section macros for the [[and]] operations in open and visual. The pairs of
characters in the options’s value are the names of the macros which start paragraphs.

shell, sh default: sh=/bin/sh

Gives the path name of the shell forked for the shell escape command ‘!’, and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw=8

Gives the width a software tab stop, used in reverse tabbing with ˆD when using autoindent
to append text, and by the shift commands.

‡‡ Version 3 only.

† 2 for edit.

-18-

showmatch, sm default: nosm

In open and visual mode, when a) or }} is typed, move the cursor to the matching (or {{ for
one second if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during input
of new text to improve throughput when the terminal in use is both slow and unintelligent.
See An Introduction to Display Editing with Vi for more details.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabstop boundaries for the purposes of dis-
play.

taglength, tl default: tl=0

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

tags default: tags=tags /usr/lib/tags

A path of files to be used as tag files for the tag command. ‡‡ A requested tag is searched
for in the specified files, sequentially. By default (even in version 2) files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire system.)

term from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been ‘[No write since last change]’ before a ‘!’ command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus one
line) at higher speeds.

w300, w1200 w9600

These are not true options but set window only if the speed is slow (300), medium (1200),
or high (9600), respectively. They are suitable for an EXINIT and make it easy to change
the 8/16/full screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: wm=0

Defines a margin for automatic wrapover of text during input in open and visual modes. See
An Introduction to Text Editing with Vi for details.

‡‡ Version 3 only.

-19-

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file which
the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line, 256
characters per global command list, 128 characters per file name, 128 characters in the previous
inserted and deleted text in open or visual, 100 characters in a shell escape command, 63 charac-
ters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines in the
file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the
total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce Englar
encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0 through 2.7,
and created the framework that users see in the present editor. Mark Horton added macros and
other features and made the editor work on a large number of terminals and Unix systems.

