
Ex changes − Version 2.0 to 3.1

This update describes the new features and changes which have been made in converting
from version 2.0 to 3.1 of ex. Each change is marked with the first version where it appeared.
Versions 2.1 through 2.7 were implemented by Bill Joy; Mark Horton produced versions 2.8, 2.9
and 3.1 and is maintaining the current version.

Update to Ex Reference Manual

Command line options

2.1 Invoking ex via

% ex −l

now sets the lisp and showmatch options. This is suitable for invocations from within
lisp (1). If you don’t like showmatch you can still use ‘‘ex −l’’ to get lisp set, just put the
command ‘‘set noshowmatch’’ in your .exrc file.

3.1 Invoking ex with an argument −wn sets the value of the window option before starting; this
is particularly suitable when invoking vi, thus

% vi −w5 ex2.0-3.1

edits the file with a 5 line initial window.

2.9 The text after a + on the command line is no longer limited to being a line number, but can
be any single command. This generality is also available within the editor on edit and next
commands (but no blanks are allowed in such commands.) A very useful form of this option
is exemplified by

% vi +/main more.c

Command addressing

2.9 The address form % is short for ‘‘1,$’’.

Commands

2.2 The editor now ignores a ‘‘:’’ in front of commands, so you can say ‘‘:wq’’ even in command
mode.

2.8 The global command now does something sensible when you say

g/pat/

printing all lines containing pat; before this printed the first line after each line containing
pat. The trailing / may be omitted here.

3.1 New commands map and unmap have been added which are used with macros in visual
mode. These are described below.

3.1 The next command now admits an argument of the form ‘‘+command’’ as described above.

3.1 The substitute command, given no arguments, now repeats the previous substitute, just as
‘‘&’’ does. This is easier to type.

2.8 The substititute command ‘‘s/str’’, omitting the delimiter on the regular expression, now
deletes ‘‘str’’; previously this was an error.

2.9 During pattern searches of a tag command, the editor uses nomagic mode; previously a
funny, undocumented mode of searching was used.

3.1 The editor requires that the tag names in the tags file be sorted.

2.3 The command P is a synonym for print.

-2-

2.9 The default starting address for z is .+1. If z is followed by a number, then this number is
remembered by setting the scroll option.

2.9 A command consisting of only two addresses, e.g. ‘‘1,10’’ now causes all the lines to be
printed, rather than just the last line.

Options

2.8 Autowrite (which can be abbreviated aw) is an on/off option, off by default. If you set this
option, then the editor will perform write commands if the current file is modified and you
give a next, ˆˆ (in visual), ! or tag commands, (and noticeably not before edit commands.)
Note that there is an equivalent way to do the command with autowrite set without the
write in each case: edit, :e #, shell and tag! do not autowrite.

3.1 A new option edcompatible causes the presence or absence of g and c suffixes on substitute
commands to be remembered, and to be toggled by repeating the suffices. The suffix r
makes the substitution be as in the ˜ command instead of like &.

2.8 There is a new hardtabs option, which is numeric and defaults to 8. Changing this to, say, 4,
tells ex that either you system expands tabs to every 4 spaces, or your terminal has hard-
ware tabs set every 4 spaces.

3.1 There is a new boolean option mapinput which is described with the macro facility for visual
below.

2.9 Whether ex prompts for commands now depends only on the setting of the prompt variable
so that you can say ‘‘set prompt’’ inside script (1) and get ex to prompt.

Environment enquiries

3.1 Ex will now execute initial commands from the EXINIT environment variable rather than
.exrc if it find such a variable.

2.9 Ex will read the terminal description from the TERMCAP environment variable if the
description there is the one for the TERM in the environment. TERMCAP may still be a
pathname (starting with a /; in that case this will be used as the termcap file rather than
/etc/termcap, and the terminal description will be sought there.)

-3-

Vi Tutorial Update

Change in default option settings.

3.1 The default setting for the magic option is now magic. Thus the characters

. [* ˜

are special in scanning patterns in vi. You should

set nomagic

in your .exrc if you don’t use these regularly. This makes vi default like ex. In a related
change, beautify is no longer the default for vi.

Line wrap around

2.4 The w W b B e and E operations in visual now wrap around line boundaries. Thus a
sequence of enough w commands will get to any word after the current position in the file,
and b’s will back up to any previous position. Thus these are more like the sentence opera-
tions (and). (You still can’t back around line boundaries during inserts however.)

2.3 The / and ? searches now find the next or previous instance of the searched for string. Pre-
viously, they would not find strings on the current line. Thus you can move to the right on
the current line by typing ‘‘/pref<ESC>’’ where ‘‘pref’’ is a prefix of the word you wish to
move to, and delete to a following string ‘‘str’’ by doing ‘‘d/str<ESC>’’, whether it is on the
same or a succeeding line. (Previously the command ‘‘d/pat/’’ deleted lines through the
next line containing ‘‘pat’’. This can be accomplished now by the somewhat unusual com-
mand ‘‘d/pat/0’’, which is short for ‘‘d/pat/+0’’. The point is that whole lines are affected
if the search patter only specifies a line, and using address arithmetic makes the pattern
only specify a line.)

3.1 Arrow keys on terminals that send more than 1 character now work. Home up keys are sup-
ported as are the four directions. (Note that the HP 2621 will turn on function key labels,
and even then you have to hold shift down to use the arrow keys. To avoid turning on the
labels, and to give up the function keys, use terminal type 2621nl instead of 2621.)

Macros

3.1 A parameterless macro facility is included from visual. This facility lets you say that when
you type a particular key, you really mean some longer sequence of keys. It is useful when
you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Put the macro body in a buffer register, say x. Then type @x to invoke it. @ may be
followed by another @ to repeat the last macro. This allows macros up to 512 chars.

b) Use the map command from command mode (typically in the .exrc file) as follows:

map lhs rhs

where lhs will be mapped to rhs. There are restrictions: lhs should be 1-keystroke (either 1
char or 1 function key) since it must be entered within 1 second. The lhs can be no longer
than 10 chars, the rhs no longer than 100. To get space, tab, ‘‘|’’, or newline into lhs or rhs,
escape them with ctrl V. (It may be necessary to escape the ctrl V with ctrl V if the map
command is given from visual mode.) Spaces and tabs inside the rhs need not be escaped.

For example, to make the Q key write and exit the editor, you can do

:map Q :wqˆVCR

which means that whenever you type ‘Q’, it will be as though you had typed the four char-
acters :wqCR. The control V is needed because without it the return would end the colon
command.

-4-

For 1 shot macros it is best to put the macro in a buffer register and map a key to ‘@r’,
since this will allow the macro to be edited.

Macros can be deleted with

unmap lhs

If the lhs of a macro is ‘‘#0’’ through ‘‘#9’’, this maps the particular function key instead of
the 2 char # sequence, if the terminal has function keys. For terminals without function
keys, the sequence #x means function key x, for any digit x. As a special case, on terminals
without function keys, the #x sequence need not be typed within one second. The character
can be changed by using a macro in the usual way:

map ˆVˆI #

to use tab, for example. (This won’t affect the map command, which still uses #, but just
the invocation from visual mode.) The undo command will undo an entire macro call as a
unit.

3.1 New commands in visual: ˆY and ˆE. These scroll the screen up and down 1 line, respec-
tively. They can be given counts, controlling the number of lines the screen is scrolled. They
differ from ˆU and ˆD in that the cursor stays over the same line in the buffer it was over
before rather than staying in the same place on the screen. (ˆY on a dumb terminal with a
full screen will redraw the screen moving the cursor up a few lines.) If you’re looking for
mnemonic value in the names, try this: Y is right next to U and E is right next to D.

Miscellaneous

3.1 In visual: ‘&’ is a synonym for ‘:&<cr>’.

2.2 In input mode in open and visual ˆV (like tenex) is now equivalent to ˆQ (which is reminis-
cent of ITS) superquoting the next character.

2.8 The j, k, and l keys now move the cursor down, up, and right, respectively, in visual mode,
as they used to do (and always did on some terminals). This is to avoid the creeping of
these keys into the map descriptions of terminals and to compensate for the lack of arrow
keys on some terminals.

2.5 The $ command now sets the column for future cursor motions to effective infinity. Thus a
‘$’ followed by up/down cursor motions moves at the right margin of each line.

2.9 The way window sizes and scrolling commands are based on the options window and scroll
has been rearranged. All command mode scrolling commands (z and ctrl D) are based on
scroll: ˆD moves scroll lines, z moves scroll*2 lines. Everything in visual (ˆD, ˆU, ˆF, ˆB, z,
window sizes in general) are based on the window option. The defaults are arranged so that
everything seems as before, but on hardcopy terminals at 300 baud the default for scroll is
11 instead of 6.

