
Awk — A Pattern Scanning and Processing Language

(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

ABSTRACT

Awk is a programming language whose basic operation is to search a set of
files for patterns, and to perform specified actions upon lines or fields of lines
which contain instances of those patterns. Awk makes certain data selection and
transformation operations easy to express; for example, the awk program

length > 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 == 0

prints all lines with an even number of fields; and the program

{ $1 = log($1); print }

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular expres-
sions and of relational operators on strings, numbers, fields, variables, and array
elements. Actions may include the same pattern-matching constructions as in
patterns, as well as arithmetic and string expressions and assignments, if-else,
while, for statements, and multiple output streams.

This report contains a user’s guide, a discussion of the design and imple-
mentation of awk , and some timing statistics.

September 1, 1978

Awk — A Pattern Scanning and Processing Language

(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

1. Introduction
Awk is a programming language designed to

make many common information retrieval and text
manipulation tasks easy to state and to perform.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be spec-
ified; this action will be performed on each line
that matches the pattern.

Readers familiar with the UNIX⃝r program
grep 1 will recognize the approach, although in awk
the patterns may be more general than in grep ,
and the actions allowed are more involved than
merely printing the matching line. For example,
the awk program

{print $3, $2}

prints the third and second columns of a table in
that order. The program

$2 ∼ /A |B |C/

prints all input lines with an A, B, or C in the sec-
ond field. The program

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different
from the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string pro-
gram on the set of named files, or on the standard
input if there are no files. The statements can also
be placed in a file pfile, and executed by the com-
mand

awk −f pfile [files]

1.2. Program Structure

An awk program is a sequence of statements
of the form:

pattern { action }
pattern { action }
...

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is fetched
and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat-
tern, the matching line is simply copied to the out-
put. (Thus a line which matches several patterns
can be printed several times.) If there is no pat-
tern for an action, then the action is performed for
every input line. A line which matches no pattern
is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to dis-
tinguish them from patterns.

1.3. Records and Fields

Awk input is divided into ‘‘records’’ termi-
nated by a record separator. The default record
separator is a newline, so by default awk processes
its input a line at a time. The number of the cur-
rent record is available in a variable named NR.

Each input record is considered to be
divided into ‘‘fields.’’ Fields are normally sepa-
rated by white space — blanks or tabs — but the
input field separator may be changed, as described
below. Fields are referred to as $1, $2, and so
forth, where $1 is the first field, and $0 is the
whole input record itself. Fields may be assigned
to. The number of fields in the current record is
available in a variable named NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument −Fc may also be used to
set FS to the character c .

If the record separator is empty, an empty
input line is taken as the record separator, and

-2-

blanks, tabs and newlines are treated as field sepa-
rators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The sim-
plest action is to print some or all of a record; this
is accomplished by the awk command print. The
awk program

{ print }

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas will
be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can
be used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number
and the number of fields.

Output may be diverted to multiple files;
the program

{ print $1 >"foo1"; print $2 >"foo2" }

writes the first field, $1, on the file foo1, and the
second field on file foo2. The >> notation can
also be used:

print $1 >>"foo"

appends the output to the file foo. (In each case,
the output files are created if necessary.) The file
name can be a variable or a field as well as a con-
stant; for example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is 10.

Similarly, output can be piped into another
process (on UNIX only); for instance,

print | "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record sepa-
rator is appended to the output of the print state-
ment.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ...

formats the expressions in the list according to the
specification in format and prints them. For
example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits wide,
with two after the decimal point, and $2 as a
10-digit long decimal number, followed by a new-
line. No output separators are produced automati-
cally; you must add them yourself, as in this exam-
ple. The version of printf is identical to that used
with C.2

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be used
as patterns: regular expressions, arithmetic rela-
tional expressions, string-valued expressions, and
arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain
control before and after processing, for initializa-
tion and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN { FS = ":" }
... rest of program ...

Or the input lines may be counted by

END { print NR }

If BEGIN is present, it must be the first pattern;
END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which
will print all lines which contain any occurrence of
the name ‘‘smith’’. If a line contains ‘‘smith’’ as

-3-

part of a larger word, it will also be printed, as in

blacksmithing

Awk regular expressions include the regular
expression forms found in the UNIX text editor
ed 3 and grep (without back-referencing). In addi-
tion, awk allows parentheses for grouping, | for
alternatives, + for ‘‘one or more’’, and ? for ‘‘zero
or one’’, all as in lex . Character classes may be
abbreviated: [a−zA−Z0−9] is the set of all letters
and digits. As an example, the awk program

/[Aa]ho |[Ww]einberger |[Kk]ernighan/

will print all lines which contain any of the names
‘‘Aho,’’ ‘‘Weinberger’’ or ‘‘Kernighan,’’ whether
capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as in
ed and sed . Within a regular expression, blanks
and the regular expression metacharacters are sig-
nificant. To turn of the magic meaning of one of
the regular expression characters, precede it with a
backslash. An example is the pattern

/ \/.∗\//

which matches any string of characters enclosed in
slashes.

One can also specify that any field or vari-
able matches a regular expression (or does not
match it) with the operators ∼ and !∼. The pro-
gram

$1 ∼ /[jJ]ohn/

prints all lines where the first field matches ‘‘john’’
or ‘‘John.’’ Notice that this will also match ‘‘John-
son’’, ‘‘St. Johnsbury’’, and so on. To restrict it to
exactly [jJ]ohn, use

$1 ∼ /ˆ[jJ]ohn$/

The caret ˆ refers to the beginning of a line or
field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres-
sion involving the usual relational operators <,
<=, ==, !=, >=, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 == 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise it
is numeric. Thus,

$1 >= "s"

selects lines that begin with an s, t, u, etc. In the
absence of any other information, fields are treated
as strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators | | (or), && (and),
and ! (not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selects lines where the first field begins with ‘‘s’’,
but is not ‘‘smith’’. && and | | guarantee that
their operands will be evaluated from left to right;
evaluation stops as soon as the truth or falsehood
is determined.

2.5. Pattern Ranges

The ‘‘pattern’’ that selects an action may
also consist of two patterns separated by a comma,
as in

pat1, pat2 { ... }

In this case, the action is performed for each line
between an occurrence of pat1 and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action state-
ments terminated by newlines or semicolons.
These action statements can be used to do a vari-
ety of bookkeeping and string manipulating tasks.

3.1. Built-in Functions

Awk provides a ‘‘length’’ function to com-
pute the length of a string of characters. This pro-
gram prints each record, preceded by its length:

{print length, $0}

length by itself is a ‘‘pseudo-variable’’ which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

{print length($0), $0}

The argument may be any expression.

-4-

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in functions,
without argument or parentheses, stands for the
value of the function on the whole record. The
program

length < 10 || length > 20

prints lines whose length is less than 10 or greater
than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin 1)
and is at most n characters long. If n is omitted,
the substring goes to the end of s. The function
index(s1, s2) returns the position where the
string s2 occurs in s1, or zero if it does not.

The function sprintf(f, e1, e2, ...) pro-
duces the value of the expressions e1, e2, etc., in
the printf format specified by f. Thus, for exam-
ple,

x = sprintf("%8.2f %10ld", $1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign-
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context demands
it. For instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be inter-
preted as numbers in a numerical context will gen-
erally have numeric value zero, but it is unwise to
count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has numeri-
cal value zero; this eliminates the need for most
BEGIN sections. For example, the sums of the
first two fields can be computed by

{ s1 += $1; s2 += $2 }
END { print s1, s2 }

Arithmetic is done internally in floating
point. The arithmetic operators are +, −, ∗, /,
and % (mod). The C increment ++ and

decrement −− operators are also available, and so
are the assignment operators +=, −=, ∗=, /=,
and %=. These operators may all be used in
expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables — they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
$3 = "too big"

print
}

which replaces the third field by ‘‘too big’’ when it
is, and in any case prints the record.

Field references may be numerical expres-
sions, as in

{ print $i, $(i+1), $(i+n) }

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 == $2) ...

fields are treated as strings.

Each input line is split into fields automati-
cally as necessary. It is also possible to split any
variable or string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ..., array[n].
The number of elements found is returned. If the
sep argument is provided, it is used as the field
separator; otherwise FS is used as the separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a
print statement,

print $1 " is " $2

prints the two fields separated by ‘‘ is ’’. Variables
and numeric expressions may also appear in con-
catenations.

-5-

3.5. Arrays

Array elements are not declared; they spring
into existence by being mentioned. Subscripts
may have any non-null value, including non-
numeric strings. As an example of a conventional
numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th ele-
ment of the array x. In fact, it is possible in prin-
ciple (though perhaps slow) to process the entire
input in a random order with the awk program

{ x[NR] = $0 }
END { ... program ... }

The first action merely records each input line in
the array x.

Array elements may be named by non-
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with val-
ues like apple, orange, etc. Then the program

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control state-
ments if-else, while, for, and statement grouping
with braces, as in C. We showed the if statement
in section 3.3 without describing it. The condition
in parentheses is evaluated; if it is true, the state-
ment following the if is done. The else part is
optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

i = 1
while (i <= NF) {

print $i
++i

}

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for state-
ment which is suited for accessing the elements of
an associative array:

for (i in array)
statement

does statement with i set in turn to each element
of array. The elements are accessed in an appar-
ently random order. Chaos will ensue if i is
altered, or if any new elements are accessed during
the loop.

The expression in the condition part of an
if, while or for can include relational operators
like <, <=, >, >=, == (‘‘is equal to’’), and !=
(‘‘not equal to’’); regular expression matches with
the match operators ∼ and !∼; the logical opera-
tors | |, &&, and !; and of course parentheses for
grouping.

The break statement causes an immediate
exit from an enclosing while or for; the continue
statement causes the next iteration to begin.

The statement next causes awk to skip
immediately to the next record and begin scanning
the patterns from the top. The statement exit
causes the program to behave as if the end of the
input had occurred.

Comments may be placed in awk programs:
they begin with the character # and end with the
end of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep , the first and simplest,
merely prints all lines which match a single speci-
fied pattern. Egrep provides more general pat-
terns, i.e., regular expressions in full generality;
fgrep searches for a set of keywords with a particu-
larly fast algorithm. Sed 4 provides most of the
editing facilities of the editor ed , applied to a
stream of input. None of these programs provides
numeric capabilities, logical relations, or variables.

Lex 5 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in its
capabilities. The use of lex , however, requires a
knowledge of C programming, and a lex program
must be compiled and loaded before use, which
discourages its use for one-shot applications.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general reg-
ular expression capabilities and an implicit
input/output loop. But it also provides convenient
numeric processing, variables, more general selec-
tion, and control flow in the actions. It does not
require compilation or a knowledge of C. Finally,
awk provides a convenient way to access fields
within lines; it is unique in this respect.

-6-

Awk also tries to integrate strings and num-
bers completely, by treating all quantities as both
string and numeric, deciding which representation
is appropriate as late as possible. In most cases
the user can simply ignore the differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn’t do string substitution) and
what the syntax should be (no explicit operator
for concatenation) rather than on writing or
debugging the code. We have tried to make the
syntax powerful but easy to use and well adapted
to scanning files. For example, the absence of dec-
larations and implicit initializations, while proba-
bly a bad idea for a general-purpose programming
language, is desirable in a language that is meant
to be used for tiny programs that may even be
composed on the command line.

In practice, awk usage seems to fall into two
broad categories. One is what might be called
‘‘report generation’’ — processing an input to
extract counts, sums, sub-totals, etc. This also
includes the writing of trivial data validation pro-
grams, such as verifying that a field contains only
numeric information or that certain delimiters are
properly balanced. The combination of textual
and numeric processing is invaluable here.

A second area of use is as a data trans-
former, converting data from the form produced
by one program into that expected by another.
The simplest examples merely select fields, per-
haps with rearrangements.

5. Implementation

The actual implementation of awk uses the
language development tools available on the UNIX

operating system. The grammar is specified with
yacc ;6 the lexical analysis is done by lex ; the regu-
lar expression recognizers are deterministic finite
automata constructed directly from the expres-
sions. An awk program is translated into a parse
tree which is then directly executed by a simple
interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve in
any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user +
system) time on a PDP-11/70 of the UNIX pro-
grams wc , grep , egrep , fgrep , sed , lex , and awk
on the following simple tasks:

1. count the number of lines.

2. print all lines containing ‘‘doug’’.

3. print all lines containing ‘‘doug’’, ‘‘ken’’ or
‘‘dmr’’.

4. print the third field of each line.

5. print the third and second fields of each line,
in that order.

6. append all lines containing ‘‘doug’’, ‘‘ken’’,
and ‘‘dmr’’ to files ‘‘jdoug’’, ‘‘jken’’, and
‘‘jdmr’’, respectively.

7. print each line prefixed by ‘‘line-number : ’’.

8. sum the fourth column of a table.

The program wc merely counts words, lines and
characters in its input; we have already mentioned
the others. In all cases the input was a file con-
taining 10,000 lines as created by the command ls
−l ; each line has the form

−rw−rw−rw− 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 charac-
ters. Times for lex do not include compile or load.

As might be expected, awk is not as fast as
the specialized tools wc , sed , or the programs in
the grep family, but is faster than the more gen-
eral tool lex . In all cases, the tasks were about as
easy to express as awk programs as programs in
these other languages; tasks involving fields were
considerably easier to express as awk programs.
Some of the test programs are shown in awk , sed
and lex .

References

1.

2.

3.

4.

5.

6.

-7-

Task
Program 1 2 3 4 5 6 7 8

wc 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
fgrep 7.7 13.8 16.1
sed 10.2 11.6 15.8 29.0 30.5 16.1
lex 65.1 150.1 144.2 67.7 70.3 104.0 81.7 92.8
awk 15.0 25.6 29.9 33.3 38.9 46.4 71.4 31.1

Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are
shown below. The lex programs are generally too
long to show.

AWK:

1. END {print NR}

2. /doug/

3. /ken|doug|dmr/

4. {print $3}

5. {print $3, $2}

6. /ken/ {print >"jken"}
/doug/ {print >"jdoug"}
/dmr/ {print >"jdmr"}

7. {print NR ": " $0}

8. {sum = sum + $4}
END {print sum}

SED:

1. $=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

4. /[ˆ]∗ []∗[ˆ]∗ []∗\([ˆ]∗\) .∗/s//\1/p

5. /[ˆ]∗ []∗\([ˆ]∗\) []∗\([ˆ]∗\) .∗/s//\2 \1/p

6. /ken/w jken
/doug/w jdoug
/dmr/w jdmr

LEX:

1. %{
int i;
%}
%%
\n i++;
. ;
%%
yywrap() {

printf("%d\n", i);
}

2. %%
ˆ.∗doug.∗$ printf("%s\n", yytext);
. ;
\n ;

