
Advanced Editing on UNIX

Brian W. Kernighan

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIX⃝r facilities for preparing and editing text. It provides
explanations and examples of

• special characters, line addressing and global commands in the editor ed;

• commands for ‘‘cut and paste’’ operations on files and parts of files, includ-
ing the mv, cp, cat and rm commands, and the r, w, m and t commands
of the editor;

• editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

6 April 1993

Advanced Editing on UNIX

Brian W. Kernighan

1. INTRODUCTION

Although UNIX provides remarkably effective
tools for text editing, that by itself is no guarantee
that everyone will automatically make the most
effective use of them. In particular, people who
are not computer specialists — typists, secretaries,
casual users — often use the system less effectively
than they might.

This document is intended as a sequel to A
Tutorial Introduction to the UNIX Text Editor [1],
providing explanations and examples of how to
edit with less effort. (You should also be familiar
with the material in UNIX For Beginners [2].)
Further information on all commands discussed
here can be found in The UNIX Programmer’s
Manual [3].

Examples are based on observations of users
and the difficulties they encounter. Topics covered
include special characters in searches and substi-
tute commands, line addressing, the global com-
mands, and line moving and copying. There are
also brief discussions of effective use of related
tools, like those for file manipulation, and those
based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this one should give you
ideas about what to try, but until you actually try
something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to the
system for many people, so it is worthwhile to
know how to get the most out of ed for the least
effort.

The next few sections will discuss shortcuts
and labor-saving devices. Not all of these will be
instantly useful to any one person, of course, but a
few will be, and the others should give you ideas
to store away for future use. And as always, until
you try these things, they will remain theoretical
knowledge, not something you have confidence in.

The List command ‘l’

ed provides two commands for printing the
contents of the lines you’re editing. Most people
are familiar with p, in combinations like

1,$p

to print all the lines you’re editing, or

s/abc/def/p

to change ‘abc’ to ‘def’ on the current line. Less
familiar is the list command l (the letter ‘l ’),
which gives slightly more information than p. In
particular, l makes visible characters that are nor-
mally invisible, such as tabs and backspaces. If
you list a line that contains some of these, l will
print each tab as −> and each backspace as −<.
This makes it much easier to correct the sort of
typing mistake that inserts extra spaces adjacent
to tabs, or inserts a backspace followed by a space.

The l command also ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on multiple lines; each printed line except
the last is terminated by a backslash \\, so you can
tell it was folded. This is useful for printing long
lines on short terminals.

Occasionally the l command will print in a
line a string of numbers preceded by a backslash,
such as \\07 or \\16. These combinations are used
to make visible characters that normally don’t
print, like form feed or vertical tab or bell. Each
such combination is a single character. When you
see such characters, be wary — they may have sur-
prising meanings when printed on some terminals.
Often their presence means that your finger
slipped while you were typing; you almost never
want them.

The Substitute Command ‘s’

Most of the next few sections will be taken
up with a discussion of the substitute command s.
Since this is the command for changing the con-
tents of individual lines, it probably has the most
complexity of any ed command, and the most
potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com-
mand. With

s/this/that/

and

s/this/that/g

the first one replaces the first ‘this’ on the line
with ‘that’. If there is more than one ‘this’ on the

-2-

line, the second form with the trailing g changes
all of them.

Either form of the s command can be fol-
lowed by p or l to ‘print’ or ‘list’ (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be preceded
by one or two ‘line numbers’ to specify that the
substitution is to take place on a group of lines.
Thus

1,$s/mispell/misspell/

changes the first occurrence of ‘mispell’ to ‘mis-
spell’ on every line of the file. But

1,$s/mispell/misspell/g

changes every occurrence in every line (and this is
more likely to be what you wanted in this particu-
lar case).

You should also notice that if you add a p
or l to the end of any of these substitute com-
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command ‘u’

Occasionally you will make a substitution in
a line, only to realize too late that it was a ghastly
mistake. The ‘undo’ command u lets you ‘undo’
the last substitution: the last line that was substi-
tuted can be restored to its previous state by typ-
ing the command

u

The Metacharacter ‘.’

As you have undoubtedly noticed when you
use ed, certain characters have unexpected mean-
ings when they occur in the left side of a substi-
tute command, or in a search for a particular line.
In the next several sections, we will talk about
these special characters, which are often called
‘metacharacters’.

The first one is the period ‘.’. On the left
side of a substitute command, or in a search with
‘/.../’, ‘.’ stands for any single character. Thus
the search

/x.y/

finds any line where ‘x’ and ‘y’ occur separated by
a single character, as in

x+y
x−y
x y
x.y

and so on. (We will use to stand for a space
whenever we need to make it visible.)

Since ‘.’ matches a single character, that
gives you a way to deal with funny characters
printed by l. Suppose you have a line that, when
printed with the l command, appears as

.... th\\07is

and you want to get rid of the \\07 (which repre-
sents the bell character, by the way).

The most obvious solution is to try

s/\\07//

but this will fail. (Try it.) The brute force solu-
tion, which most people would now take, is to re-
type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn’t too big, but for a very long line, re-
typing is a bore. This is where the metacharacter
‘.’ comes in handy. Since ‘\\07’ really represents a
single character, if we say

s/th.is/this/

the job is done. The ‘.’ matches the mysterious
character between the ‘h’ and the ‘i’, whatever it
is.

Bear in mind that since ‘.’ matches any sin-
gle character, the command

s/./,/

converts the first character on a line into a ‘,’,
which very often is not what you intended.

As is true of many characters in ed, the ‘.’
has several meanings, depending on its context.
This line shows all three:

.s/././

The first ‘.’ is a line number, the number of the
line we are editing, which is called ‘line dot’. (We
will discuss line dot more in Section 3.) The sec-
ond ‘.’ is a metacharacter that matches any single
character on that line. The third ‘.’ is the only
one that really is an honest literal period. On the
right side of a substitution, ‘.’ is not special. If
you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

-3-

The Backslash ‘\\’
Since a period means ‘any character’, the

question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.

into

Now is the time?

The backslash ‘\\’ does the job. A backslash turns
off any special meaning that the next character
might have; in particular, ‘\\.’ converts the ‘.’ from
a ‘match anything’ into a period, so you can use it
to replace the period in

Now is the time.

like this:

s/\\./?/

The pair of characters ‘\\.’ is considered by ed to
be a single real period.

The backslash can also be used when search-
ing for lines that contain a special character. Sup-
pose you are looking for a line that contains

.PP

The search

/.PP/

isn’t adequate, for it will find a line like

THE APPLICATION OF ...

because the ‘.’ matches the letter ‘A’. But if you
say

/\\.PP/

you will find only lines that contain ‘.PP’.

The backslash can also be used to turn off
special meanings for characters other than ‘.’. For
example, consider finding a line that contains a
backslash. The search

/\\/

won’t work, because the ‘\\’ isn’t a literal ‘\\’, but
instead means that the second ‘/’ no longer
delimits the search. But by preceding a backslash
with another one, you can search for a literal back-
slash. Thus

/\\\\/

does work. Similarly, you can search for a forward
slash ‘/’ with

/\\//

The backslash turns off the meaning of the imme-
diately following ‘/’ so that it doesn’t terminate

the /.../ construction prematurely.

As an exercise, before reading further, find
two substitute commands each of which will con-
vert the line

\\x\\.\\y

into the line

\\x\\y

Here are several solutions; verify that each
works as advertised.

s/\\\\\\.//
s/x../x/
s/..y/y/

A couple of miscellaneous notes about back-
slashes and special characters. First, you can use
any character to delimit the pieces of an s com-
mand: there is nothing sacred about slashes. (But
you must use slashes for context searching.) For
instance, in a line that contains a lot of slashes
already, like

//exec //sys.fort.go // etc...

you could use a colon as the delimiter — to delete
all the slashes, type

s:/::g

Second, if # and @ are your character erase
and line kill characters, you have to type \\# and
\\@; this is true whether you’re talking to ed or
any other program.

When you are adding text with a or i or c,
backslash is not special, and you should only put
in one backslash for each one you really want.

The Dollar Sign ‘$’

The next metacharacter, the ‘$’, stands for
‘the end of the line’. As its most obvious use, sup-
pose you have the line

Now is the

and you wish to add the word ‘time’ to the end.
Use the $ like this:

s/$/ time/

to get

Now is the time

Notice that a space is needed before ‘time’ in the
substitute command, or you will get

Now is thetime

As another example, replace the second
comma in the following line with a period without
altering the first:

-4-

Now is the time, for all good men,

The command needed is

s/,$/./

The $ sign here provides context to make specific
which comma we mean. Without it, of course, the
s command would operate on the first comma to
produce

Now is the time. for all good men,

As another example, to convert

Now is the time.

into

Now is the time?

as we did earlier, we can use

s/.$/?/

Like ‘.’, the ‘$’ has multiple meanings
depending on context. In the line

$s/$/$/

the first ‘$’ refers to the last line of the file, the
second refers to the end of that line, and the third
is a literal dollar sign, to be added to that line.

The Circumflex ‘ˆ’

The circumflex (or hat or caret) ‘ˆ’ stands
for the beginning of the line. For example, sup-
pose you are looking for a line that begins with
‘the’. If you simply say

/the/

you will in all likelihood find several lines that con-
tain ‘the’ in the middle before arriving at the one
you want. But with

/ˆthe/

you narrow the context, and thus arrive at the
desired one more easily.

The other use of ‘ˆ’ is of course to enable
you to insert something at the beginning of a line:

s/ˆ/ /

places a space at the beginning of the current line.

Metacharacters can be combined. To search
for a line that contains only the characters

.PP

you can use the command

/ˆ\\.PP$/

The Star ‘∗’
Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are
some indeterminate number of spaces between the
x and the y. Suppose the job is to replace all the
spaces between x and y by a single space. The
line is too long to retype, and there are too many
spaces to count. What now?

This is where the metacharacter ‘∗’ comes in
handy. A character followed by a star stands for
as many consecutive occurrences of that character
as possible. To refer to all the spaces at once, say

s/x ∗y/x y/

The construction ‘ ∗’ means ‘as many spaces as
possible’. Thus ‘x ∗y’ means ‘an x, as many
spaces as possible, then a y’.

The star can be used with any character,
not just space. If the original example was instead

text x−−−−−−−−y text

then all ‘−’ signs can be replaced by a single space
with the command

s/x−∗y/x y/

Finally, suppose that the line was

text x..................y text

Can you see what trap lies in wait for the unwary?
If you blindly type

s/x.∗y/x y/

what will happen? The answer, naturally, is that
it depends. If there are no other x’s or y’s on the
line, then everything works, but it’s blind luck, not
good management. Remember that ‘.’ matches
any single character? Then ‘.∗’ matches as many
single characters as possible, and unless you’re
careful, it can eat up a lot more of the line than
you expected. If the line was, for example, like
this:

text x text x................y text y text

then saying

s/x.∗y/x y/

will take everything from the first ‘x’ to the last
‘y’, which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the
special meaning of ‘.’ with ‘\\.’:

s/x\\.∗y/x y/

Now everything works, for ‘\\.∗’ means ‘as many
periods as possible’.

-5-

There are times when the pattern ‘.∗’ is
exactly what you want. For example, to change

Now is the time for all good men

into

Now is the time.

use ‘.∗’ to eat up everything after the ‘for’:

s/ for.∗/./

There are a couple of additional pitfalls
associated with ‘∗’ that you should be aware of.
Most notable is the fact that ‘as many as possible’
means zero or more. The fact that zero is a legiti-
mate possibility is sometimes rather surprising.
For example, if our line contained

text xy text x y text

and we said

s/x ∗y/x y/

the first ‘xy’ matches this pattern, for it consists of
an ‘x’, zero spaces, and a ‘y’. The result is that
the substitute acts on the first ‘xy’, and does not
touch the later one that actually contains some
intervening spaces.

The way around this, if it matters, is to
specify a pattern like

/x ∗y/

which says ‘an x, a space, then as many more
spaces as possible, then a y’, in other words, one
or more spaces.

The other startling behavior of ‘∗’ is again
related to the fact that zero is a legitimate number
of occurrences of something followed by a star.
The command

s/x∗/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a legal
number of matches, and there are no x’s at the
beginning of the line (so that gets converted into a
‘y’), nor between the ‘a’ and the ‘b’ (so that gets
converted into a ‘y’), nor ... and so on. Make sure
you really want zero matches; if not, in this case
write

s/xx∗/y/g

‘xx∗’ is one or more x’s.

The Brackets ‘[]’

Suppose that you want to delete any num-
bers that appear at the beginning of all lines of a
file. You might first think of trying a series of
commands like

1,$s/ˆ1∗//
1,$s/ˆ2∗//
1,$s/ˆ3∗//

and so on, but this is clearly going to take forever
if the numbers are at all long. Unless you want to
repeat the commands over and over until finally all
numbers are gone, you must get all the digits on
one pass. This is the purpose of the brackets [and
].

The construction

[0123456789]

matches any single digit — the whole thing is
called a ‘character class’. With a character class,
the job is easy. The pattern ‘[0123456789]∗’
matches zero or more digits (an entire number), so

1,$s/ˆ[0123456789]∗//

deletes all digits from the beginning of all lines.

Any characters can appear within a charac-
ter class, and just to confuse the issue there are
essentially no special characters inside the brack-
ets; even the backslash doesn’t have a special
meaning. To search for special characters, for
example, you can say

/[.\\$ˆ[]/

Within [...], the ‘[’ is not special. To get a ‘]’ into
a character class, make it the first character.

It’s a nuisance to have to spell out the dig-
its, so you can abbreviate them as [0−9]; similarly,
[a−z] stands for the lower case letters, and [A−Z]
for upper case.

As a final frill on character classes, you can
specify a class that means ‘none of the following
characters’. This is done by beginning the class
with a ‘ˆ’:

[ˆ0−9]

stands for ‘any character except a digit’. Thus you
might find the first line that doesn’t begin with a
tab or space by a search like

/ˆ[ˆ(space)(tab)]/

Within a character class, the circumflex has
a special meaning only if it occurs at the begin-
ning. Just to convince yourself, verify that

/ˆ[ˆˆ]/

finds a line that doesn’t begin with a circumflex.

-6-

The Ampersand ‘&’

The ampersand ‘&’ is used primarily to save
typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the ‘the’. The
‘&’ is used to eliminate the repetition. On the
right side of a substitute, the ampersand means
‘whatever was just matched’, so you can say

s/the/& best/

and the ‘&’ will stand for ‘the’. Of course this
isn’t much of a saving if the thing matched is just
‘the’, but if it is something truly long or awful, or
if it is something like ‘.∗’ which matches a lot of
text, you can save some tedious typing. There is
also much less chance of making a typing error in
the replacement text. For example, to parenthe-
size a line, regardless of its length,

s/.∗/(&)/

The ampersand can occur more than once
on the right side:

s/the/& best and & worst/

makes

Now is the best and the worst time

and

s/.∗/&? &!!/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to turn off the special meaning:

s/ampersand/\\&/

converts the word into the symbol. Notice that
‘&’ is not special on the left side of a substitute,
only on the right side.

Substituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by ‘substituting
in a newline’. As the simplest example, suppose a
line has gotten unmanageably long because of edit-
ing (or merely because it was unwisely typed). If
it looks like

text xy text

you can break it between the ‘x’ and the ‘y’ like
this:

s/xy/x\\
y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that ‘\\’ turns
off special meanings, it seems relatively intuitive
that a ‘\\’ at the end of a line would make the new-
line there no longer special.

You can in fact make a single line into sev-
eral lines with this same mechanism. As a large
example, consider underlining the word ‘very’ in a
long line by splitting ‘very’ onto a separate line,
and preceding it by the roff or nroff formatting
command ‘.ul’.

text a very big text

The command

s/ very /\\
.ul\\
very\\
/

converts the line into four shorter lines, preceding
the word ‘very’ by the line ‘.ul’, and eliminating
the spaces around the ‘very’, all at the same time.

When a newline is substituted in, dot is left
pointing at the last line created.

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of s. Given
the lines

Now is
the time

and supposing that dot is set to the first of them,
then the command

j

joins them together. No blanks are added, which
is why we carefully showed a blank at the begin-
ning of the second line.

All by itself, a j command joins line dot to
line dot+1, but any contiguous set of lines can be
joined. Just specify the starting and ending line
numbers. For example,

1,$jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \\(... \\)
(This section should be skipped on first

reading.) Recall that ‘&’ is a shorthand that
stands for whatever was matched by the left side

-7-

of an s command. In much the same way you can
capture separate pieces of what was matched; the
only difference is that you have to specify on the
left side just what pieces you’re interested in.

Suppose, for instance, that you have a file of
lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the
name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands, but it is tedious and error-prone. (It is
instructive to figure out how it is done, though.)

The alternative is to ‘tag’ the pieces of the
pattern (in this case, the last name, and the ini-
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \\(and \\), whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol ‘\\1’
refers to whatever matched the first \\(...\\) pair,
‘\\2’ to the second \\(...\\), and so on.

The command

1,$s/ˆ\\([ˆ,]∗\\), ∗\\(.∗\\)/\\2 \\1/

although hard to read, does the job. The first
\\(...\\) matches the last name, which is any string
up to the comma; this is referred to on the right
side with ‘\\1’. The second \\(...\\) is whatever fol-
lows the comma and any spaces, and is referred to
as ‘\\2’.

Of course, with any editing sequence this
complicated, it’s foolhardy to simply run it and
hope. The global commands g and v discussed in
section 4 provide a way for you to print exactly
those lines which were affected by the substitute
command, and thus verify that it did what you
wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is that
of line addressing in ed, that is, how you specify
what lines are to be affected by editing commands.
We have already used constructions like

1,$s/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single newline
(or return) to print the next line, and with

/thing/

to find a line that contains ‘thing’. Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurrence of
‘thing’. This is especially handy when you realize
that the thing you want to operate on is back up
the page from where you are currently editing.

The slash and question mark are the only
characters you can use to delimit a context search,
though you can use essentially any character in a
substitute command.

Address Arithmetic

The next step is to combine the line num-
bers like ‘.’, ‘$’, ‘/.../’ and ‘?...?’ with ‘+’ and ‘−’.
Thus

$−1

is a command to print the next to last line of the
current file (that is, one line before line ‘$’). For
example, to recall how far you got in a previous
editing session,

$−5,$p

prints the last six lines. (Be sure you understand
why it’s six, not five.) If there aren’t six, of
course, you’ll get an error message.

As another example,

.−3,.+3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you a
bit of context. By the way, the ‘+’ can be omit-
ted:

.−3,.3p

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use ‘−’ and ‘+’ as
line numbers by themselves.

−

by itself is a command to move back up one line in
the file. In fact, you can string several minus signs
together to move back up that many lines:

−−−

moves up three lines, as does ‘−3’. Thus

−3,+3p

is also identical to the examples above.

Since ‘−’ is shorter than ‘.−1’, constructions
like

−,.s/bad/good/

are useful. This changes ‘bad’ to ‘good’ on the pre-
vious line and on the current line.

-8-

‘+’ and ‘−’ can be used in combination with
searches using ‘/.../’ and ‘?...?’, and with ‘$’. The
search

/thing/−−

finds the line containing ‘thing’, and positions you
two lines before it.

Repeated Searches

Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn’t the horrible thing that you wanted, so it is
necessary to repeat the search again. You don’t
have to re-type the search, for the construction

//

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be
repeated as many times as necessary. You can also
go backwards:

??

searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but you
can use ‘//’ as the left side of a substitute com-
mand, to mean ‘the most recent pattern’.

/horrible thing/
.... ed prints line with ‘horrible thing’ ...
s//good/p

To go backwards and change a line, say

??s//good/

Of course, you can still use the ‘&’ on the right
hand side of a substitute to stand for whatever got
matched:

//s//& &/p

finds the next occurrence of whatever you searched
for last, replaces it by two copies of itself, then
prints the line just to verify that it worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don’t specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a command
finishes. If you can edit without specifying unnec-
essary line numbers, you can save a lot of typing.

As the most obvious example, if you issue a
search command like

/thing/

you are left pointing at the next line that contains
‘thing’. Then no address is required with com-
mands like s to make a substitution on that line,
or p to print it, or l to list it, or d to delete it, or
a to append text after it, or c to change it, or i to
insert text before it.

What happens if there was no ‘thing’?
Then you are left right where you were — dot is
unchanged. This is also true if you were sitting on
the only ‘thing’ when you issued the command.
The same rules hold for searches that use ‘?...?’;
the only difference is the direction in which you
search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line ‘$’ gets deleted, however, dot points at
the new line ‘$’.

The line-changing commands a, c and i by
default all affect the current line — if you give no
line number with them, a appends text after the
current line, c changes the current line, and i
inserts text before the current line.

a, c, and i behave identically in one respect
— when you stop appending, changing or insert-
ing, dot points at the last line entered. This is
exactly what you want for typing and editing on
the fly. For example, you can say

a
... text ...
... botch ... (minor error)
.
s/botch/correct/ (fix botched line)
a
... more text ...

without specifying any line number for the substi-
tute command or for the second append command.
Or you can say

a
... text ...
... horrible botch ... (major error)
.
c (replace entire line)
... fixed up line ...

You should experiment to determine what
happens if you add no lines with a, c or i.

The r command will read a file into the text
being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say 0r to read a file
in at the beginning of the text. (You can also say
0a or 1i to start adding text at the beginning.)

The w command writes out the entire file.
If you precede the command by one line number,
that line is written, while if you precede it by two

-9-

line numbers, that range of lines is written. The
w command does not change dot: the current line
remains the same, regardless of what lines are
written. This is true even if you say something
like

/ˆ\\.AB/,/ˆ\\.AE/w abstract

which involves a context search.

Since the w command is so easy to use, you
should save what you are editing regularly as you
go along just in case the system crashes, or in case
you do something foolish, like clobbering what
you’re editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple — you
are left sitting on the last line that got changed. If
there were no changes, then dot is unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the mid-
dle one:

x1
x2
x3

Then the command

−,+s/x/y/p

prints the third line, which is the last one changed.
But if the three lines had been

x1
y2
y3

and the same command had been issued while dot
pointed at the second line, then the result would
be to change and print only the first line, and that
is where dot would be set.

Semicolon ‘;’

Searches with ‘/.../’ and ‘?...?’ start at the
current line and move forward or backward respec-
tively until they either find the pattern or get back
to the current line. Sometimes this is not what is
wanted. Suppose, for example, that the buffer
contains lines like this:

.

.

.
ab
.
.
.
bc
.
.

Starting at line 1, one would expect that the com-
mand

/a/,/b/p

prints all the lines from the ‘ab’ to the ‘bc’ inclu-
sive. Actually this is not what happens. Both
searches (for ‘a’ and for ‘b’) start from the same
point, and thus they both find the line that con-
tains ‘ab’. The result is to print a single line.
Worse, if there had been a line with a ‘b’ in it
before the ‘ab’ line, then the print command would
be in error, since the second line number would be
less than the first, and it is illegal to try to print
lines in reverse order.

This is because the comma separator for line
numbers doesn’t set dot as each address is pro-
cessed; each search starts from the same place. In
ed, the semicolon ‘;’ can be used just like comma,
with the single difference that use of a semicolon
forces dot to be set at that point as the line num-
bers are being evaluated. In effect, the semicolon
‘moves’ dot. Thus in our example above, the com-
mand

/a/;/b/p

prints the range of lines from ‘ab’ to ‘bc’, because
after the ‘a’ is found, dot is set to that line, and
then ‘b’ is searched for, starting beyond that line.

This property is most often useful in a very
simple situation. Suppose you want to find the
second occurrence of ‘thing’. You could say

/thing/
//

but this prints the first occurrence as well as the
second, and is a nuisance when you know very well
that it is only the second one you’re interested in.
The solution is to say

/thing/;//

This says to find the first occurrence of ‘thing’, set
dot to that line, then find the second and print
only that.

Closely related is searching for the second
previous occurrence of something, as in

?something?;??

Printing the third or fourth or ... in either direc-
tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

1;/thing/

because this fails if ‘thing’ occurs on line 1. But it
is possible to say

0;/thing/

(one of the few places where 0 is a legal line

-10-

number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable — if you are reading
or writing a file or making substitutions or delet-
ing lines, these will be stopped in some clean but
unpredictable state in the middle (which is why it
is not usually wise to stop them). Dot may or
may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are not sitting on that line or even near
it. Dot is left where it was when the p command
was started.

4. GLOBAL COMMANDS

The global commands g and v are used to
perform one or more editing commands on all lines
that either contain (g) or don’t contain (v) a spec-
ified pattern.

As the simplest example, the command

g/UNIX/p

prints all lines that contain the word ‘UNIX’. The
pattern that goes between the slashes can be any-
thing that could be used in a line search or in a
substitute command; exactly the same rules and
limitations apply.

As another example, then,

g/ˆ\\./p

prints all the formatting commands in a file (lines
that begin with ‘.’).

The v command is identical to g, except
that it operates on those line that do not contain
an occurrence of the pattern. (Don’t look too
hard for mnemonic significance to the letter ‘v’.)
So

v/ˆ\\./p

prints all the lines that don’t begin with ‘.’ — the
actual text lines.

The command that follows g or v can be
anything:

g/ˆ\\./d

deletes all lines that begin with ‘.’, and

g/ˆ$/d

deletes all empty lines.

Probably the most useful command that can
follow a global is the substitute command, for this
can be used to make a change and print each
affected line for verification. For example, we
could change the word ‘Unix’ to ‘UNIX’ every-
where, and verify that it really worked, with

g/Unix/s//UNIX/gp

Notice that we used ‘//’ in the substitute com-
mand to mean ‘the previous pattern’, in this case,
‘Unix’. The p command is done on every line that
matches the pattern, not just those on which a
substitution took place.

The global command operates by making
two passes over the file. On the first pass, all lines
that match the pattern are marked. On the sec-
ond pass, each marked line in turn is examined,
dot is set to that line, and the command executed.
This means that it is possible for the command
that follows a g or v to use addresses, set dot, and
so on, quite freely.

g/ˆ\\.PP/+

prints the line that follows each ‘.PP’ command
(the signal for a new paragraph in some formatting
packages). Remember that ‘+’ means ‘one line
past dot’. And

g/topic/?ˆ\\.SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a line that begins ‘.SH’ (a
section heading) and prints the line that follows
that, thus showing the section headings under
which ‘topic’ is mentioned. Finally,

g/ˆ\\.EQ/+,/ˆ\\.EN/−p

prints all the lines that lie between lines beginning
with ‘.EQ’ and ‘.EN’ formatting commands.

The g and v commands can also be pre-
ceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one command
under the control of a global command, although
the syntax for expressing the operation is not espe-
cially natural or pleasant. As an example, suppose
the task is to change ‘x’ to ‘y’ and ‘a’ to ‘b’ on all
lines that contain ‘thing’. Then

g/thing/s/x/y/\\
s/a/b/

is sufficient. The ‘\\’ signals the g command that
the set of commands continues on the next line; it
terminates on the first line that does not end with
‘\\’. (As a minor blemish, you can’t use a substi-
tute command to insert a newline within a g com-
mand.)

-11-

You should watch out for this problem: the
command

g/x/s//y/\\
s/a/b/

does not work as you expect. The remembered
pattern is the last pattern that was actually exe-
cuted, so sometimes it will be ‘x’ (as expected),
and sometimes it will be ‘a’ (not expected). You
must spell it out, like this:

g/x/s/x/y/\\
s/a/b/

It is also possible to execute a, c and i com-
mands under a global command; as with other
multi-line constructions, all that is needed is to
add a ‘\\’ at the end of each line except the last.
Thus to add a ‘.nf’ and ‘.sp’ command before each
‘.EQ’ line, type

g/ˆ\\.EQ/i\\
.nf\\
.sp

There is no need for a final line containing a ‘.’ to
terminate the i command, unless there are further
commands being done under the global. On the
other hand, it does no harm to put it in either.

5. CUT AND PASTE WITH UNIX COM-
MANDS

One editing area in which non-programmers
seem not very confident is in what might be called
‘cut and paste’ operations — changing the name of
a file, making a copy of a file somewhere else, mov-
ing a few lines from one place to another in a file,
inserting one file in the middle of another, splitting
a file into pieces, and splicing two or more files
together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and go
cautiously. The next several sections talk about
cut and paste. We will begin with the UNIX com-
mands for moving entire files around, then discuss
ed commands for operating on pieces of files.

Changing the Name of a File

You have a file named ‘memo’ and you want
it to be called ‘paper’ instead. How is it done?

The UNIX program that renames files is
called mv (for ‘move’); it ‘moves’ the file from one
name to another, like this:

mv memo paper

That’s all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can’t move a file to
itself —

mv x x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a file
— an entirely fresh version. This might be
because you want to work on a file, and yet save a
copy in case something gets fouled up, or just
because you’re paranoid.

In any case, the way to do it is with the cp
command. (cp stands for ‘copy’; the system is big
on short command names, which are appreciated
by heavy users, but sometimes a strain for
novices.) Suppose you have a file called ‘good’ and
you want to save a copy before you make some
dramatic editing changes. Choose a name —
‘savegood’ might be acceptable — then type

cp good savegood

This copies ‘good’ onto ‘savegood’, and you now
have two identical copies of the file ‘good’. (If
‘savegood’ previously contained something, it gets
overwritten.)

Now if you decide at some time that you
want to get back to the original state of ‘good’,
you can say

mv savegood good

(if you’re not interested in ‘savegood’ any more),
or

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber the
‘target’ file if it already exists, so you had better
be sure that’s what you want to do before you do
it.

Removing a File

If you decide you are really done with a file
forever, you can remove it with the rm command:

rm savegood

throws away (irrevocably) the file called ‘saveg-
ood’.

Putting Two or More Files Together

The next step is the familiar one of collect-
ing two or more files into one big one. This will be
needed, for example, when the author of a paper

-12-

decides that several sections need to be combined
into one. There are several ways to do it, of which
the cleanest, once you get used to it, is a program
called cat. (Not all programs have two-letter
names.) cat is short for ‘concatenate’, which is
exactly what we want to do.

Suppose the job is to combine the files ‘file1’
and ‘file2’ into a single file called ‘bigfile’. If you
say

cat file

the contents of ‘file’ will get printed on your termi-
nal. If you say

cat file1 file2

the contents of ‘file1’ and then the contents of
‘file2’ will both be printed on your terminal, in that
order. So cat combines the files, all right, but it’s
not much help to print them on the terminal — we
want them in ‘bigfile’.

Fortunately, there is a way. You can tell the
system that instead of printing on your terminal,
you want the same information put in a file. The
way to do it is to add to the command line the
character > and the name of the file where you
want the output to go. Then you can say

cat file1 file2 >bigfile

and the job is done. (As with cp and mv, you’re
putting something into ‘bigfile’, and anything that
was already there is destroyed.)

This ability to ‘capture’ the output of a pro-
gram is one of the most useful aspects of the sys-
tem. Fortunately it’s not limited to the cat pro-
gram — you can use it with any program that
prints on your terminal. We’ll see some more uses
for it in a moment.

Naturally, you can combine several files, not
just two:

cat file1 file2 file3 ... >bigfile

collects a whole bunch.

Question: is there any difference between

cp good savegood

and

cat good >savegood

Answer: for most purposes, no. You might reason-
ably ask why there are two programs in that case,
since cat is obviously all you need. The answer is
that cp will do some other things as well, which
you can investigate for yourself by reading the
manual. For now we’ll stick to simple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading fur-
ther it would be valuable if you figured out how.
To be specific, how would you use cp, mv and/or
cat to add the file ‘good1’ to the end of the file
‘good’?

You could try

cat good good1 >temp
mv temp good

which is probably most direct. You should also
understand why

cat good good1 >good

doesn’t work. (Don’t practice with a good
‘good’ !)

The easy way is to use a variant of >, called
>>. In fact, >> is identical to > except that
instead of clobbering the old file, it simply tacks
stuff on at the end. Thus you could say

cat good1 >>good

and ‘good1’ is added to the end of ‘good’. (And if
‘good’ didn’t exist, this makes a copy of ‘good1’
called ‘good’.)

6. CUT AND PASTE WITH THE EDI-
TOR

Now we move on to manipulating pieces of
files — individual lines or groups of lines. This is
another area where new users seem unsure of
themselves.

Filenames

The first step is to ensure that you know the
ed commands for reading and writing files. Of
course you can’t go very far without knowing r
and w. Equally useful, but less well known, is the
‘edit’ command e. Within ed, the command

e newfile

says ‘I want to edit a new file called newfile, with-
out leaving the editor.’ The e command discards
whatever you’re currently working on and starts
over on newfile. It’s exactly the same as if you
had quit with the q command, then re-entered ed
with a new file name, except that if you have a
pattern remembered, then a command like // will
still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any subse-
quent e, r or w commands that don’t contain a
filename will refer to this remembered file. Thus

-13-

ed file1
... (editing) ...
w (writes back in file1)
e file2 (edit new file, without leaving editor)
... (editing on file2) ...
w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside, if
you examine the sequence of commands here, you
can see why many UNIX systems use e as a syn-
onym for ed.)

You can find out the remembered file name
at any time with the f command; just type f with-
out a file name. You can also change the name of
the remembered file name with f; a useful sequence
is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f to
guarantee that a careless w command won’t clob-
ber the original.

Inserting One File into Another

Suppose you have a file called ‘memo’, and
you want the file called ‘table’ to be inserted just
after the reference to Table 1. That is, in ‘memo’
somewhere is a line that says

Table 1 shows that ...

and the data contained in ‘table’ has to go there,
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit ‘memo’, find ‘Table
1’, and add the file ‘table’ right there:

ed memo
/Table 1/
Table 1 shows that ... [response from ed]
.r table

The critical line is the last one. As we said earlier,
the r command reads a file; here you asked for it
to be read in right after line dot. An r command
without any address adds lines at the end, so it is
the same as $r.

Writing out Part of a File

The other side of the coin is writing out
part of the document you’re editing. For example,
maybe you want to split out into a separate file
that table from the previous example, so it can be
formatted and tested separately. Suppose that in
the file being edited we have

.TS
...[lots of stuff]
.TE

which is the way a table is set up for the tbl pro-
gram. To isolate the table in a separate file called
‘table’, first find the start of the table (the ‘.TS’
line), then write out the interesting part:

/ˆ\\.TS/
.TS [ed prints the line it found]
.,/ˆ\\.TE/w table

and the job is done. If you are confident, you can
do it all at once with

/ˆ\\.TS/;/ˆ\\.TE/w table

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like; just
give one line number instead of two. For example,
if you have just typed a horribly complicated line
and you know that it (or something like it) is
going to be needed later, then save it — don’t re-
type it. In the editor, say

a
...lots of stuff...
...horrible line...
.
.w temp
a
...more stuff...
.
.r temp
a
...more stuff...
.

This last example is worth studying, to be sure
you appreciate what’s going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command ‘.PP’. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad) is
to write the paragraph onto a temporary file,
delete it from its current position, then read in the
temporary file at the end. Assuming that you are
sitting on the ‘.PP’ command that begins the
paragraph, this is the sequence of commands:

.,/ˆ\\.PP/−w temp

.,//−d
$r temp

That is, from where you are now (‘.’) until one
line before the next ‘.PP’ (‘/ˆ\\.PP/−’) write onto

-14-

‘temp’. Then delete the same lines. Finally, read
‘temp’ at the end.

As we said, that’s the brute force way. The
easier way (often) is to use the move command m
that ed provides — it lets you do the whole set of
operations at one crack, without any temporary
file.

The m command is like many other ed com-
mands in that it takes up to two line numbers in
front that tell what lines are to be affected. It is
also followed by a line number that tells where the
lines are to go. Thus

line1, line2 m line3

says to move all the lines between ‘line1’ and
‘line2’ after ‘line3’. Naturally, any of ‘line1’ etc.,
can be patterns between slashes, $ signs, or other
ways to specify lines.

Suppose again that you’re sitting at the first
line of the paragraph. Then you can say

.,/ˆ\\.PP/−m$

That’s all.

As another example of a frequent operation,
you can reverse the order of two adjacent lines by
moving the first one to after the second. Suppose
that you are positioned at the first. Then

m+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the second
line,

m−−

does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and re-
reading. When is brute force better anyway?
This is a matter of personal taste — do what you
have most confidence in. The main difficulty with
the m command is that if you use patterns to
specify both the lines you are moving and the tar-
get, you have to take care that you specify them
properly, or you may well not move the lines you
thought you did. The result of a botched m com-
mand can be a ghastly mess. Doing the job a step
at a time makes it easier for you to verify at each
step that you accomplished what you wanted to.
It’s also a good idea to issue a w command before
doing anything complicated; then if you goof, it’s
easy to back up to where you were.

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for

keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name ‘x’. If a line
number precedes the k, that line is marked. (The
mark name must be a single lower case letter.)
Now you can refer to the marked line with the
address

′x

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with ′a. Then find the last
line and mark it with ′b. Now position yourself at
the place where the stuff is to go and say

′a,′bm.

Bear in mind that only one line can have a
particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course this could be
more than one line; then the saving is presumably
even greater.

ed provides another command, called t (for
‘transfer’) for making a copy of a group of one or
more lines at any point. This is often easier than
writing and reading.

The t command is identical to the m com-
mand, except that instead of moving lines it sim-
ply duplicates them at the place you named. Thus

1,t

duplicates the entire contents that you are editing.
A more common use for t is for creating a series of
lines that differ only slightly. For example, you
can say

a
.......... x (long line)
.
t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/y/z/ (change it a bit)

and so on.

The Temporary Escape ‘!’

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command, perhaps one of the file copy
or move commands discussed in section 5, without
leaving the editor. The ‘escape’ command !

-15-

provides a way to do this.

If you say

!any UNIX command

your current editing state is suspended, and the
UNIX command you asked for is executed. When
the command finishes, ed will signal you by print-
ing another !; at that point you can resume edit-
ing.

You can really do any UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another !.

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor, all of which are relatively
easy once you know how ed works, because they
are all based on the editor. In this section we will
give some fairly cursory examples of these tools,
more to indicate their existence than to provide a
complete tutorial. More information on each can
be found in [3].

Grep

Sometimes you want to find all occurrences
of some word or pattern in a set of files, to edit
them or perhaps just to verify their presence or
absence. It may be possible to edit each file sepa-
rately and look for the pattern of interest, but if
there are many files this can get very tedious, and
if the files are really big, it may be impossible
because of limits in ed.

The program grep was invented to get
around these limitations. The search patterns that
we have described in the paper are often called
‘regular expressions’, and ‘grep’ stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files that contains a particular
pattern. Thus

grep ′thing′ file1 file2 file3 ...

finds ‘thing’ wherever it occurs in any of the files
‘file1’, ‘file2’, etc. grep also indicates the file in
which the line was found, so you can later edit it if
you like.

The pattern represented by ‘thing’ can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat-
tern searching. It is wisest always to enclose the
pattern in the single quotes ′...′ if it contains any
non-alphabetic characters, since many such charac-
ters also mean something special to the UNIX com-
mand interpreter (the ‘shell’). If you don’t quote
them, the command interpreter will try to inter-
pret them before grep gets a chance.

There is also a way to find lines that don’t
contain a pattern:

grep −v ′thing′ file1 file2 ...

finds all lines that don’t contains ‘thing’. The −v
must occur in the position shown. Given grep
and grep −v, it is possible to do things like select-
ing all lines that contain some combination of pat-
terns. For example, to get all lines that contain ‘x’
but not ‘y’:

grep x file... | grep −v y

(The notation | is a ‘pipe’, which causes the out-
put of the first command to be used as input to
the second command; see [2].)

Editing Scripts

If a fairly complicated set of editing opera-
tions is to be done on a whole set of files, the easi-
est thing to do is to make up a ‘script’, i.e., a file
that contains the operations you want to perform,
then apply this script to each file in turn.

For example, suppose you want to change
every ‘Unix’ to ‘UNIX’ and every ‘Gcos’ to
‘GCOS’ in a large number of files. Then put into
the file ‘script’ the lines

g/Unix/s//UNIX/g
g/Gcos/s//GCOS/g
w
q

Now you can say

ed file1 <script
ed file2 <script
...

This causes ed to take its commands from the pre-
pared script. Notice that the whole job has to be
planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed (‘stream editor’) is a version of the edi-
tor with restricted capabilities but which is capa-
ble of processing unlimited amounts of input.
Basically sed copies its input to its output, apply-
ing one or more editing commands to each line of
input.

As an example, suppose that we want to do
the ‘Unix’ to ‘UNIX’ part of the example given
above, but without rewriting the files. Then the
command

sed ′s/Unix/UNIX/g′ file1 file2 ...

applies the command ‘s/Unix/UNIX/g’ to all lines

-16-

from ‘file1’, ‘file2’, etc., and copies all lines to the
output. The advantage of using sed in such a case
is that it can be used with input too large for ed
to handle. All the output can be collected in one
place, either in a file or perhaps piped into another
program.

If the editing transformation is so compli-
cated that more than one editing command is
needed, commands can be supplied from a file, or
on the command line, with a slightly more com-
plex syntax. To take commands from a file, for
example,

sed −f cmdfile input−files...

sed has further capabilities, including condi-
tional testing and branching, which we cannot go
into here.

Acknowledgement

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

References

[1] Brian W. Kernighan, A Tutorial Introduc-
tion to the UNIX Text Editor, Bell Labora-
tories internal memorandum.

[2] Brian W. Kernighan, UNIX For Beginners,
Bell Laboratories internal memorandum.

[3] Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer’s Manual. Bell
Laboratories.

