
A TROFF Tutorial

Brian W. Kernighan

Typesetting
Text formatting

NROFF

ABSTRACT

troff is a text-formatting program for driving the Graphic Systems photo-
typesetter on the UNIX⃝r and GCOS operating systems. This device is capable of
producing high quality text; this paper is an example of troff output.

The phototypesetter itself normally runs with four fonts, containing roman,
italic and bold letters (as on this page), a full greek alphabet, and a substantial
number of special characters and mathematical symbols. Characters can be
printed in a range of sizes, and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions, as
well as the usual features of a formatter — right-margin justification, automatic
hyphenation, page titling and numbering, and so on. It also provides macros,
arithmetic variables and operations, and conditional testing, for complicated for-
matting tasks.

This document is an introduction to the most basic use of troff. It presents
just enough information to enable the user to do simple formatting tasks like
making viewgraphs, and to make incremental changes to existing packages of
troff commands. In most respects, the UNIX formatter nroff is identical to troff,
so this document also serves as a tutorial on nroff.

9 April 1993



A TROFF Tutorial

Brian W. Kernighan

Typesetting
Text formatting

NROFF

1. Introduction

troff [1] is a text-formatting program, writ-
ten by J. F. Ossanna, for producing high-quality
printed output from the phototypesetter on the
UNIX and GCOS operating systems. This docu-
ment is an example of troff output.

The single most important rule of using
troff is not to use it directly, but through some
intermediary. In many ways, troff resembles an
assembly language — a remarkably powerful and
flexible one — but nonetheless such that many
operations must be specified at a level of detail
and in a form that is too hard for most people to
use effectively.

For two special applications, there are pro-
grams that provide an interface to troff for the
majority of users. eqn [2] provides an easy to
learn language for typesetting mathematics; the
eqn user need know no troff whatsoever to type-
set mathematics. tbl [3] provides the same con-
venience for producing tables of arbitrary complex-
ity.

For producing straight text (which may well
contain mathematics or tables), there are a
number of ‘macro packages’ that define formatting
rules and operations for specific styles of docu-
ments, and reduce the amount of direct contact
with troff. In particular, the ‘−ms’ [4] and
PWB/MM [5] packages for Bell Labs internal
memoranda and external papers provide most of
the facilities needed for a wide range of document
preparation. (This memo was prepared with
‘−ms’.) There are also packages for viewgraphs,
for simulating the older roff formatters on UNIX

and GCOS, and for other special applications.
Typically you will find these packages easier to use
than troff once you get beyond the most trivial
operations; you should always consider them first.

In the few cases where existing packages
don’t do the whole job, the solution is not to write
an entirely new set of troff instructions from
scratch, but to make small changes to adapt pack-
ages that already exist.

In accordance with this philosophy of letting
someone else do the work, the part of troff

described here is only a small part of the whole,
although it tries to concentrate on the more useful
parts. In any case, there is no attempt to be com-
plete. Rather, the emphasis is on showing how to
do simple things, and how to make incremental
changes to what already exists. The contents of
the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
5. Tabs
6. Local motions: Drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering
10. Number registers and arithmetic
11. Macros with arguments
12. Conditionals
13. Environments
14. Diversions

Appendix: Typesetter character set

The troff described here is the C-language version
running on UNIX at Murray Hill, as documented in
[1].

To use troff you have to prepare not only
the actual text you want printed, but some infor-
mation that tells how you want it printed. (Read-
ers who use roff will find the approach familiar.)
For troff the text and the formatting information
are often intertwined quite intimately. Most com-
mands to troff are placed on a line separate from
the text itself, beginning with a period (one com-
mand per line). For example,

Some text.
.ps 14
Some more text.

will change the ‘point size’, that is, the size of the
letters being printed, to ‘14 point’ (one point is
1/72 inch) like this:

Some text. Some more text.

Occasionally, though, something special
occurs in the middle of a line — to produce



-2-

Area = πr 2

you have to type

Area = \(∗p\fIr\fR\|\s8\u2\d\s0

(which we will explain shortly). The backslash
character \\ is used to introduce troff commands
and special characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps.ps sets
the point size. One point is 1/72 inch, so 6-point
characters are at most 1/12 inch high, and
36-point characters are 1/2 inch. There are 15 point
sizes, listed below.

6 point: Pack my box with five dozen liquor jugs.

7 point: Pack my box with five dozen liquor jugs.

8 point: Pack my box with five dozen liquor jugs.

9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen

12 point: Pack my box with five dozen

14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number after .ps.ps is not one of these

legal sizes, it is rounded up to the next valid value,
with a maximum of 36. If no number follows .ps.ps,
troff reverts to the previous size, whatever it was.
troff begins with point size 10, which is usually
fine. This document is in 9 point.

The point size can also be changed in the
middle of a line or even a word with the in-line
command \s\s. To produce

UNIX runs on a PDP-11/45

type

\s8UNIX\s10 runs on a \s8PDP-\s1011/45

As above, \s\s should be followed by a legal point
size, except that \s0\s0 causes the size to revert to its
previous value. Notice that \s1011\s1011 can be under-
stood correctly as ‘size 10, followed by an 11’, if
the size is legal, but not otherwise. Be cautious
with similar constructions.

Relative size changes are also legal and use-
ful:

\s−2UNIX\s+2

temporarily decreases the size, whatever it is, by
two points, then restores it. Relative size changes
have the advantage that the size difference is inde-
pendent of the starting size of the document. The

amount of the relative change is restricted to a sin-
gle digit.

The other parameter that determines what
the type looks like is the spacing between lines,
which is set independently of the point size. Verti-
cal spacing is measured from the bottom of one
line to the bottom of the next. The command to
control vertical spacing is .vs.vs. For running text, it
is usually best to set the vertical spacing about
20% bigger than the character size. For example,
so far in this document, we have used ‘‘9 on 11’’,
that is,

.ps 9

.vs 11p

If we changed to

.ps 9

.vs 9p

the running text would look like this. After a few
lines, you will agree it looks a little cramped. The
right vertical spacing is partly a matter of taste,
depending on how much text you want to squeeze
into a given space, and partly a matter of tradi-
tional printing style. By default, troff uses 10 on
12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch. This
is 12 on 14.

Point size and vertical spacing make a substantial difference in the
amount of text per square inch. For example, 10 on 12 uses about twice as
much space as 7 on 8. This is 6 on 7, which is even smaller. It packs a lot
more words per line, but you can go blind trying to read it.

When used without arguments, .ps.ps and .vs.vs
revert to the previous size and vertical spacing
respectively.

The command .sp.sp is used to get extra verti-
cal space. Unadorned, it gives you one extra blank
line (one .vs.vs, whatever that has been set to). Typ-
ically, that’s more or less than you want, so .sp.sp can
be followed by information about how much space
you want —

.sp 2i

means ‘two inches of vertical space’.

.sp 2p

means ‘two points of vertical space’; and

.sp 2

means ‘two vertical spaces’ — two of whatever .vs.vs
is set to (this can also be made explicit with
.sp 2v.sp 2v); troff also understands decimal fractions in
most places, so



-3-

.sp 1.5i

is a space of 1.5 inches. These same scale factors
can be used after .vs.vs to define line spacing, and in
fact after most commands that deal with physical
dimensions.

It should be noted that all size numbers are
converted internally to ‘machine units’, which are
1/432 inch (1/6 point). For most purposes, this is
enough resolution that you don’t have to worry
about the accuracy of the representation. The sit-
uation is not quite so good vertically, where resolu-
tion is 1/144 inch (1/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different
fonts at any one time. Normally three fonts
(Times roman, italic and bold) and one collection
of special characters are permanently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany
of the special font are listed in Appendix A.

troff prints in roman unless told otherwise.
To switch into bold, use the .ft.ft command

.ft B

and for italics,

.ft I

To return to roman, use .ft R.ft R; to return to the pre-
vious font, whatever it was, use either .ft P.ft P or just
.ft.ft. The ‘underline’ command

.ul

causes the next input line to print in italics. .ul.ul
can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f\f:

boldface text

is produced by

\fBbold\fIface\fR text

If you want to do this so the previous font, what-
ever it was, is left undisturbed, insert extra \fP\fP
commands, like this:

\fBbold\fP\fIface\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous font
after each change or you can lose it. The same is

true of .ps.ps and .vs.vs when used without an argu-
ment.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp.fp tells troff
what fonts are physically mounted on the typeset-
ter:

.fp 3 H

says that the Helvetica font is mounted on position
3. (For a complete list of fonts and what they look
like, see the troff manual.) Appropriate .fp.fp com-
mands should appear at the beginning of your doc-
ument if you do not use the standard fonts.

It is possible to make a document relatively
independent of the actual fonts used to print it by
using font numbers instead of names; for example,
\f3\f3 and .ft˜3.ft˜3 mean ‘whatever font is mounted at
position 3’, and thus work for any setting. Normal
settings are roman font on 1, italic on 2, bold on 3,
and special on 4.

There is also a way to get ‘synthetic’ bold
fonts by overstriking letters with a slight offset.
Look at the .bd.bd command in [1].

Special characters have four-character names
beginning with \(\(, and they may be inserted any-
where. For example,

1/4 +
1/2 =

3/4

is produced by

\(14 + \(12 = \(34

In particular, greek letters are all of the form
\(∗−\(∗−, where −− is an upper or lower case roman
letter reminiscent of the greek. Thus to get

Σ(α×β) → ∞

in bare troff we have to type

\(∗S(\(∗a\(mu\(∗b) \(−> \(if

That line is unscrambled as follows:

\(∗S Σ
( (
\(∗a α
\(mu ×
\(∗b β
) )
\(−> →
\(if ∞

A complete list of these special names occurs in
Appendix A.

In eqn [2] the same effect can be achieved
with the input

SIGMA ( alpha times beta ) −> inf



-4-

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a
single character as far as troff is concerned — the
‘translate’ command

.tr \(mi\(em

is perfectly clear, meaning

.tr −—

that is, to translate − into —.

Some characters are automatically trans-
lated into others: grave ` and acute ´ accents
(apostrophes) become open and close single quotes
‘˜’; the combination of ‘‘...’’ is generally preferable
to the double quotes "...". Similarly a typed
minus sign becomes a hyphen -. To print an
explicit − sign, use \-\-. To get a backslash printed,
use \e\e.

4. Indents and Line Lengths

troff starts with a line length of 6.5 inches,
too wide for 81/2×11 paper. To reset the line
length, use the .ll.ll command, as in

.ll 6i

As with .sp.sp, the actual length can be specified in
several ways; inches are probably the most intu-
itive.

The maximum line length provided by the
typesetter is 7.5 inches, by the way. To use the
full width, you will have to reset the default physi-
cal left margin (‘‘page offset’’), which is normally
slightly less than one inch from the left edge of the
paper. This is done by the .po.po command.

.po 0

sets the offset as far to the left as it will go.

The indent command .in.in causes the left
margin to be indented by some specified amount
from the page offset. If we use .in.in to move the left
margin in, and .ll.ll to move the right margin to the
left, we can make offset blocks of text:

.in 0.3i

.ll −0.3i
text to be set into a block
.ll +0.3i
.in −0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctifice-
tur nomen tuum; adveniat regnum
tuum; fiat voluntas tua, sicut in caelo,
et in terra. ... Amen.

Notice the use of ‘+’ and ‘−’ to specify the
amount of change. These change the previous

setting by the specified amount, rather than just
overriding it. The distinction is quite important:
.ll +1i.ll +1i makes lines one inch longer; .ll 1i.ll 1i makes
them one inch long.

With .in.in, .ll.ll and .po.po, the previous value is
used if no argument is specified.

To indent a single line, use the ‘temporary
indent’ command .ti.ti. For example, all paragraphs
in this memo effectively begin with the command

.ti 3

Three of what? The default unit for .ti.ti, as for
most horizontally oriented commands (.ll.ll, .in.in, .po.po),
is ems; an em is roughly the width of the letter ‘m’
in the current point size. (Precisely, a em in size p
is p points.) Although inches are usually clearer
than ems to people who don’t set type for a living,
ems have a place: they are a measure of size that
is proportional to the current point size. If you
want to make text that keeps its proportions
regardless of point size, you should use ems for all
dimensions. Ems can be specified as scale factors
directly, as in .ti 2.5m.ti 2.5m.

Lines can also be indented negatively if the
indent is already positive:

.ti −0.3i

causes the next line to be moved back three tenths
of an inch. Thus to make a decorative initial capi-
tal, we indent the whole paragraph, then move the
letter ‘P’ back with a .ti.ti command:

P
ater noster qui est in caelis sanc-
tificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua,

sicut in caelo, et in terra. ... Amen.

Of course, there is also some trickery to make the
‘P’ bigger (just a ‘\s36P\s0’), and to move it down
from its normal position (see the section on local
motions).

5. Tabs

Tabs (the ASCII ‘horizontal tab’ character)
can be used to produce output in columns, or to
set the horizontal position of output. Typically
tabs are used only in unfilled text. Tab stops are
set by default every half inch from the current
indent, but can be changed by the .ta.ta command.
To set stops every inch, for example,

.ta 1i 2i 3i 4i 5i 6i

Unfortunately the stops are left-justified
only (as on a typewriter), so lining up columns of
right-justified numbers can be painful. If you have
many numbers, or if you need more complicated
table layout, don’t use troff directly; use the tbl
program described in [3].



-5-

For a handful of numeric columns, you can
do it this way: Precede every number by enough
blanks to make it line up when typed.

.nf

.ta 1i 2i 3i
1 tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab 900
.fi

Then change each leading blank into the string \0\0.
This is a character that does not print, but that
has the same width as a digit. When printed, this
will produce

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-over
space with some character other than blanks by
setting the ‘tab replacement character’ with the .tc.tc
command:

.ta 1.5i 2.5i

.tc \(ru (\(ru is " ")
Name tab Age tab

produces

Name Age

To reset the tab replacement character to a blank,
use .tc.tc with no argument. (Lines can also be
drawn with the \l\l command, described in Section
6.)

troff also provides a very general mecha-
nism called ‘fields’ for setting up complicated
columns. (This is used by tbl). We will not go
into it in this paper.

6. Local Motions: Drawing lines and char-
acters

Remember ‘Area = πr
2
’ and the big ‘P’ in

the Paternoster. How are they done? troff pro-
vides a host of commands for placing characters of
any size at any place. You can use them to draw
special characters or to tune your output for a par-
ticular appearance. Most of these commands are
straightforward, but messy to read and tough to
type correctly.

If you won’t use eqn, subscripts and super-
scripts are most easily done with the half-line local
motions \u\u and \d\d. To go back up the page half a
point-size, insert a \u\u at the desired place; to go
down, insert a \d\d. (\u\u and \d\d should always be
used in pairs, as explained below.) Thus

Area = \(∗pr\u2\d

produces

Area = πr
2

To make the ‘2’ smaller, bracket it with \s−2...\s0\s−2...\s0.
Since \u\u and \d\d refer to the current point size, be
sure to put them either both inside or both outside
the size changes, or you will get an unbalanced
vertical motion.

Sometimes the space given by \u\u and \d\d
isn’t the right amount. The \v\v command can be
used to request an arbitrary amount of vertical
motion. The in-line command

\v´(amount)´

causes motion up or down the page by the amount
specified in ‘(amount)’. For example, to move the
‘P’ down, we used

.in +0.6i (move paragraph in)

.ll −0.3i (shorten lines)

.ti −0.3i (move P back)
\v´2´\s36P\s0\v´−2´ater noster qui est
in caelis ...

A minus sign causes upward motion, while no sign
or a plus sign means down the page. Thus \v′−2′\v′−2′
causes an upward vertical motion of two line
spaces.

There are many other ways to specify the
amount of motion —

\v´0.1i´
\v´3p´
\v´−0.5m´

and so on are all legal. Notice that the scale speci-
fier ii or pp or mm goes inside the quotes. Any char-
acter can be used in place of the quotes; this is
also true of all other troff commands described in
this section.

Since troff does not take within-the-line
vertical motions into account when figuring out
where it is on the page, output lines can have
unexpected positions if the left and right ends
aren’t at the same vertical position. Thus \v\v, like
\u\u and \d\d, should always balance upward vertical
motion in a line with the same amount in the
downward direction.

Arbitrary horizontal motions are also avail-
able — \h\h is quite analogous to \v\v, except that
the default scale factor is ems instead of line
spaces. As an example,

\h´−0.1i´

causes a backwards motion of a tenth of an inch.
As a practical matter, consider printing the mathe-
matical symbol ‘>>’. The default spacing is too
wide, so eqn replaces this by

>\h´−0.3m´>

to produce >>.



-6-

Frequently \h\h is used with the ‘width func-
tion’ \w\w to generate motions equal to the width of
some character string. The construction

\w´thing´

is a number equal to the width of ‘thing’ in
machine units (1/432 inch). All troff computa-
tions are ultimately done in these units. To move
horizontally the width of an ‘x’, we can say

\h´\w´x´u´

As we mentioned above, the default scale factor for
all horizontal dimensions is mm, ems, so here we
must have the uu for machine units, or the motion
produced will be far too large. troff is quite
happy with the nested quotes, by the way, so long
as you don’t leave any out.

As a live example of this kind of construc-
tion, all of the command names in the text, like
.sp.sp, were done by overstriking with a slight offset.
The commands for .sp.sp are

.sp\h´−\w´.sp´u´\h´1u´.sp

That is, put out ‘.sp’, move left by the width of
‘.sp’, move right 1 unit, and print ‘.sp’ again. (Of
course there is a way to avoid typing that much
input for each command name, which we will dis-
cuss in Section 11.)

There are also several special-purpose troff
commands for local motion. We have already seen
\0\0, which is an unpaddable white space of the
same width as a digit. ‘Unpaddable’ means that it
will never be widened or split across a line by line
justification and filling. There is also \\(blank),
which is an unpaddable character the width of a
space, \|\|, which is half that width, \ˆ\ˆ, which is one
quarter of the width of a space, and \&\&, which has
zero width. (This last one is useful, for example,
in entering a text line which would otherwise begin
with a ‘.’.)

The command \o\o, used like

\o´set of characters´

causes (up to 9) characters to be overstruck, cen-
tered on the widest. This is nice for accents, as in

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique

which makes

système téléphonique

The accents are \(ga\(ga and \(aa\(aa, or \`\` and \´\´;
remember that each is just one character to troff.

You can make your own overstrikes with
another special convention, \z\z, the zero-motion
command. \zx\zx suppresses the normal horizontal
motion after printing the single character xx, so
another character can be laid on top of it.

Although sizes can be changed within \o\o, it cen-
ters the characters on the widest, and there can be
no horizontal or vertical motions, so \z\z may be the
only way to get what you want:

is produced by

.sp 2
\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq

The .sp.sp is needed to leave room for the result.

As another example, an extra-heavy semi-
colon that looks like

,. instead of ; or ;
can be constructed with a big comma and a big
period above it:

\s+6\z,\v´−0.25m´.\v´0.25m´\s0

‘0.25m’ is an empirical constant.

A more ornate overstrike is given by the
bracketing function \b\b, which piles up characters
vertically, centered on the current baseline. Thus
we can get big brackets, constructing them with
piled-up smaller pieces:



⌈
⌊
x ⌉
⌋ 


by typing in only this:

.sp
\b′\(lt\(lk\(lb′ \b′\(lc\(lf′ x \b′\(rc\(rf′ \b′\(rt\(rk\(rb′

troff also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \l′1i′\l′1i′ draws a line
one inch long, like this: . The
length can be followed by the character to use if
the isn’t appropriate; \l′0.5i.′\l′0.5i.′ draws a half-inch
line of dots: ............... The construction \L\L is
entirely analogous, except that it draws a vertical
line instead of horizontal.

7. Strings

Obviously if a paper contains a large
number of occurrences of an acute accent over a
letter ‘e’, typing \o"e\´"\o"e\´" for each é would be a
great nuisance.

Fortunately, troff provides a way in which
you can store an arbitrary collection of text in a
‘string’, and thereafter use the string name as a
shorthand for its contents. Strings are one of sev-
eral troff mechanisms whose judicious use lets you
type a document with less effort and organize it so
that extensive format changes can be made with



-7-

few editing changes.

A reference to a string is replaced by what-
ever text the string was defined as. Strings are
defined with the command .ds.ds. The line

.ds e \o"e\´"

defines the string ee to have the value \o"e\´"\o"e\´"
String names may be either one or two char-

acters long, and are referred to by \∗x\∗x for one
character names or \∗(xy\∗(xy for two character names.
Thus to get téléphone, given the definition of the
string ee as above, we can say t\∗el\∗ephone.

If a string must begin with blanks, define it
as

.ds xx " text

The double quote signals the beginning of the defi-
nition. There is no trailing quote; the end of the
line terminates the string.

A string may actually be several lines long;
if troff encounters a \\ at the end of any line, it is
thrown away and the next line added to the cur-
rent one. So you can make a long string simply by
ending each line but the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will dis-
cuss some of these possibilities later.

8. Introduction to Macros

Before we can go much further in troff, we
need to learn a bit about the macro facility. In its
simplest form, a macro is just a shorthand nota-
tion quite similar to a string. Suppose we want
every paragraph to start in exactly the same way
— with a space and a temporary indent of two
ems:

.sp

.ti +2m

Then to save typing, we would like to collapse
these into one shorthand line, a troff ‘command’
like

.PP

that would be treated by troff exactly as

.sp

.ti +2m

.PP.PP is called a macro. The way we tell troff what

.PP.PP means is to define it with the .de.de command:

.de PP

.sp

.ti +2m

..

The first line names the macro (we used ‘.PP.PP’ for
‘paragraph’, and upper case so it wouldn’t conflict
with any name that troff might already know
about). The last line .... marks the end of the defi-
nition. In between is the text, which is simply
inserted whenever troff sees the ‘command’ or
macro call

.PP

A macro can contain any mixture of text and for-
matting commands.

The definition of .PP.PP has to precede its first
use; undefined macros are simply ignored. Names
are restricted to one or two characters.

Using macros for commonly occurring
sequences of commands is critically important.
Not only does it save typing, but it makes later
changes much easier. Suppose we decide that the
paragraph indent is too small, the vertical space is
much too big, and roman font should be forced.
Instead of changing the whole document, we need
only change the definition of .PP.PP to something like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

..

and the change takes effect everywhere we used
.PP.PP.

\"\" is a troff command that causes the rest
of the line to be ignored. We use it here to add
comments to the macro definition (a wise idea
once definitions get complicated).

As another example of macros, consider
these two which start and end a block of offset,
unfilled text, like most of the examples in this
paper:

.de BS \" start indented block

.sp

.nf

.in +0.3i

..

.de BE \" end indented block

.sp

.fi

.in −0.3i

..

Now we can surround text like



-8-

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .BS.BS and .BE.BE, and it will come
out as it did above. Notice that we indented by
.in +0.3i.in +0.3i instead of .in 0.3i.in 0.3i. This way we can nest
our uses of .BS.BS and BEBE to get blocks within
blocks.

If later on we decide that the indent should
be 0.5i, then it is only necessary to change the def-
initions of .BS.BS and .BE.BE, not the whole paper.

9. Titles, Pages and Numbering

This is an area where things get tougher,
because nothing is done for you automatically. Of
necessity, some of this section is a cookbook, to be
copied literally until you get some experience.

Suppose you want a title at the top of each
page, saying just

˜˜˜˜left top center top right top˜˜˜˜

In roff, one can say

.he ´left top´center top´right top´

.fo ´left bottom´center bottom´right bottom´

to get headers and footers automatically on every
page. Alas, this doesn’t work in troff, a serious
hardship for the novice. Instead you have to do a
lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enough); and what
to do at and around the title line (harder). Taking
these in reverse order, first we define a macro .NP.NP
(for ‘new page’) to process titles and the like at
the end of one page and the beginning of the next:

.de NP
′bp
′sp 0.5i
.tl ´left top´center top´right top´
′sp 0.3i
..

To make sure we’re at the top of a page, we issue a
‘begin page’ command ′bp′bp, which causes a skip to
top-of-page (we’ll explain the ′′ shortly). Then we
space down half an inch, print the title (the use of
.tl.tl should be self explanatory; later we will discuss
parameterizing the titles), space another 0.3
inches, and we’re done.

To ask for .NP.NP at the bottom of each page,
we have to say something like ‘when the text is
within an inch of the bottom of the page, start the
processing for a new page.’ This is done with a
‘when’ command .wh.wh:

.wh −1i NP

(No ‘.’ is used before NP; this is simply the name
of a macro, not a macro call.) The minus sign
means ‘measure up from the bottom of the page’,
so ‘−1i’ means ‘one inch from the bottom’.

The .wh.wh command appears in the input out-
side the definition of .NP.NP; typically the input
would be

.de NP

...

..

.wh −1i NP

Now what happens? As text is actually
being output, troff keeps track of its vertical posi-
tion on the page, and after a line is printed within
one inch from the bottom, the .NP.NP macro is acti-
vated. (In the jargon, the .wh.wh command sets a
trap at the specified place, which is ‘sprung’ when
that point is passed.) .NP.NP causes a skip to the top
of the next page (that’s what the ′bp′bp was for),
then prints the title with the appropriate margins.

Why ′bp′bp and ′sp′sp instead of .bp.bp and .sp.sp? The
answer is that .sp.sp and .bp.bp, like several other com-
mands, cause a break to take place. That is, all
the input text collected but not yet printed is
flushed out as soon as possible, and the next input
line is guaranteed to start a new line of output. If
we had used .sp.sp or .bp.bp in the .NP.NP macro, this
would cause a break in the middle of the current
output line when a new page is started. The effect
would be to print the left-over part of that line at
the top of the page, followed by the next input line
on a new output line. This is not what we want.
Using ′′ instead of .. for a command tells troff that
no break is to take place — the output line cur-
rently being filled should not be forced out before
the space or new page.

The list of commands that cause a break is
short and natural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether
you use a .. or a ′′. If you really need a break, add a
.br.br command at the appropriate place.

One other thing to beware of — if you’re
changing fonts or point sizes a lot, you may find
that if you cross a page boundary in an unex-
pected font or size, your titles come out in that
size and font instead of what you intended. Fur-
thermore, the length of a title is independent of
the current line length, so titles will come out at
the default length of 6.5 inches unless you change
it, which is done with the .lt.lt command.

There are several ways to fix the problems
of point sizes and fonts in titles. For the simplest
applications, we can change .NP.NP to set the proper
size and font for the title, then restore the previous



-9-

values, like this:

.de NP
′bp
′sp 0.5i
.ft R \" set title font to roman
.ps 10 \" and size to 10 point
.lt 6i \" and length to 6 inches
.tl ´left´center´right´
.ps \" revert to previous size
.ft P \" and to previous font
′sp 0.3i
..

This version of .NP.NP does not work if the
fields in the .tl.tl command contain size or font
changes. To cope with that requires troff’s ‘envi-
ronment’ mechanism, which we will discuss in Sec-
tion 13.

To get a footer at the bottom of a page, you
can modify .NP.NP so it does some processing before
the ′bp′bp command, or split the job into a footer
macro invoked at the bottom margin and a header
macro invoked at the top of the page. These vari-
ations are left as exercises.

Output page numbers are computed auto-
matically as each page is produced (starting at 1),
but no numbers are printed unless you ask for
them explicitly. To get page numbers printed,
include the character %% in the .tl.tl line at the posi-
tion where you want the number to appear. For
example

.tl ´´- % -´´

centers the page number inside hyphens, as on this
page. You can set the page number at any time
with either .bp n.bp n, which immediately starts a new
page numbered nn, or with .pn n.pn n, which sets the
page number for the next page but doesn’t cause a
skip to the new page. Again, .bp +n.bp +n sets the page
number to nn more than its current value; .bp.bp
means .bp +1.bp +1.

10. Number Registers and Arithmetic

troff has a facility for doing arithmetic, and
for defining and using variables with numeric val-
ues, called number registers. Number registers,
like strings and macros, can be useful in setting up
a document so it is easy to change later. And of
course they serve for any sort of arithmetic compu-
tation.

Like strings, number registers have one or
two character names. They are set by the .nr.nr
command, and are referenced anywhere by \nx\nx
(one character name) or \n(xy\n(xy (two character
name).

There are quite a few pre-defined number
registers maintained by troff, among them %% for
the current page number; nlnl for the current verti-
cal position on the page; dydy, momo and yryr for the
current day, month and year; and .s.s and .f.f for the
current size and font. (The font is a number from
1 to 4.) Any of these can be used in computations
like any other register, but some, like .s.s and .f.f,
cannot be changed with .nr.nr.

As an example of the use of number regis-
ters, in the −ms−ms macro package [4], most signifi-
cant parameters are defined in terms of the values
of a handful of number registers. These include
the point size for text, the vertical spacing, and
the line and title lengths. To set the point size
and vertical spacing for the following paragraphs,
for example, a user may say

.nr PS 9

.nr VS 11

The paragraph macro .PP.PP is defined (roughly) as
follows:

.de PP

.ps \\n(PS \" reset size

.vs \\n(VSp \" spacing

.ft R \" font

.sp 0.5v \" half a line

.ti +3m

..

This sets the font to Roman and the point size and
line spacing to whatever values are stored in the
number registers PSPS and VSVS.

Why are there two backslashes? This is the
eternal problem of how to quote a quote. When
troff originally reads the macro definition, it peels
off one backslash to see what’s coming next. To
ensure that another is left in the definition when
the macro is used, we have to put in two back-
slashes in the definition. If only one backslash is
used, point size and vertical spacing will be frozen
at the time the macro is defined, not when it is
used.

Protecting by an extra layer of backslashes
is only needed for \n\n, \∗\∗, \$\$ (which we haven’t
come to yet), and \\ itself. Things like \s\s, \f\f, \h\h,
\v\v, and so on do not need an extra backslash,
since they are converted by troff to an internal
code immediately upon being seen.

Arithmetic expressions can appear anywhere
that a number is expected. As a trivial example,

.nr PS \\n(PS−2

decrements PS by 2. Expressions can use the
arithmetic operators +, −, ∗, /, % (mod), the rela-
tional operators >, >=, <, <=, =, and != (not
equal), and parentheses.



-10-

Although the arithmetic we have done so far
has been straightforward, more complicated things
are somewhat tricky. First, number registers hold
only integers. troff arithmetic uses truncating
integer division, just like Fortran. Second, in the
absence of parentheses, evaluation is done left-to-
right without any operator precedence (including
relational operators). Thus

7∗−4+3/13

becomes ‘−1’. Number registers can occur any-
where in an expression, and so can scale indicators
like pp, ii, mm, and so on (but no spaces). Although
integer division causes truncation, each number
and its scale indicator is converted to machine
units (1/432 inch) before any arithmetic is done,
so 1i/2u evaluates to 0.5i correctly.

The scale indicator uu often has to appear
when you wouldn’t expect it — in particular, when
arithmetic is being done in a context that implies
horizontal or vertical dimensions. For example,

.ll 7/2i

would seem obvious enough — 31/2 inches. Sorry.
Remember that the default units for horizontal
parameters like .ll.ll are ems. That’s really ‘7 ems /
2 inches’, and when translated into machine units,
it becomes zero. How about

.ll 7i/2

Sorry, still no good — the ‘2’ is ‘2 ems’, so ‘7i/2’ is
small, although not zero. You must use

.ll 7i/2u

So again, a safe rule is to attach a scale indicator
to every number, even constants.

For arithmetic done within a .nr.nr command,
there is no implication of horizontal or vertical
dimension, so the default units are ‘units’, and
7i/2 and 7i/2u mean the same thing. Thus

.nr ll 7i/2

.ll \\n(llu

does just what you want, so long as you don’t for-
get the uu on the .ll.ll command.

11. Macros with arguments

The next step is to define macros that can
change from one use to the next according to
parameters supplied as arguments. To make this
work, we need two things: first, when we define the
macro, we have to indicate that some parts of it
will be provided as arguments when the macro is
called. Then when the macro is called we have to
provide actual arguments to be plugged into the
definition.

Let us illustrate by defining a macro .SM.SM
that will print its argument two points smaller

than the surrounding text. That is, the macro call

.SM TROFF

will produce TROFF.

The definition of .SM.SM is

.de SM
\s−2\\$1\s+2
..

Within a macro definition, the symbol \\$n\\$n refers
to the nnth argument that the macro was called
with. Thus \\$1\\$1 is the string to be placed in a
smaller point size when .SM.SM is called.

As a slightly more complicated version, the
following definition of .SM.SM permits optional second
and third arguments that will be printed in the
normal size:

.de SM
\\$3\s−2\\$1\s+2\\$2
..

Arguments not provided when the macro is called
are treated as empty, so

.SM TROFF ),

produces TROFF), while

.SM TROFF ). (

produces (TROFF). It is convenient to reverse the
order of arguments because trailing punctuation is
much more common than leading.

By the way, the number of arguments that a
macro was called with is available in number regis-
ter .$.$.

The following macro .BD.BD is the one used to
make the ‘bold roman’ we have been using for
troff command names in text. It combines hori-
zontal motions, width computations, and argument
rearrangement.

.de BD
\&\\$3\f1\\$1\h´−\w´\\$1´u+1u´\\$1\fP\\$2
..

The \h\h and \w\w commands need no extra back-
slash, as we discussed above. The \&\& is there in
case the argument begins with a period.

Two backslashes are needed with the \\$n\\$n
commands, though, to protect one of them when
the macro is being defined. Perhaps a second
example will make this clearer. Consider a macro
called .SH.SH which produces section headings rather
like those in this paper, with the sections num-
bered automatically, and the title in bold in a
smaller size. The use is

.SH "Section title ..."



-11-

(If the argument to a macro is to contain blanks,
then it must be surrounded by double quotes,
unlike a string, where only one leading quote is
permitted.)

Here is the definition of the .SH.SH macro:

.nr SH 0 \" initialize section number

.de SH

.sp 0.3i

.ft B

.nr SH \\n(SH+1 \" increment number

.ps \\n(PS−1\" decrease PS
\\n(SH. \\$1 \" number. title
.ps \\n(PS \" restore PS
.sp 0.3i
.ft R
..

The section number is kept in number register SH,
which is incremented each time just before it is
used. (A number register may have the same
name as a macro without conflict but a string may
not.)

We used \\n(SH\\n(SH instead of \n(SH\n(SH and
\\n(PS\\n(PS instead of \n(PS\n(PS. If we had used \n(SH\n(SH,
we would get the value of the register at the time
the macro was defined, not at the time it was used.
If that’s what you want, fine, but not here. Simi-
larly, by using \\n(PS\\n(PS, we get the point size at the
time the macro is called.

As an example that does not involve num-
bers, recall our .NP.NP macro which had a

.tl ´left´center´right´

We could make these into parameters by using
instead

.tl ´\\∗(LT´\\∗(CT´\\∗(RT´

so the title comes from three strings called LT, CT
and RT. If these are empty, then the title will be
a blank line. Normally CT would be set with
something like

.ds CT - % -

to give just the page number between hyphens (as
on the top of this page), but a user could supply
private definitions for any of the strings.

12. Conditionals

Suppose we want the .SH.SH macro to leave
two extra inches of space just before section 1, but
nowhere else. The cleanest way to do that is to
test inside the .SH.SH macro whether the section
number is 1, and add some space if it is. The .if.if
command provides the conditional test that we
can add just before the heading line is output:

.if \\n(SH=1 .sp 2i \" first section only

The condition after the .if.if can be any arith-
metic or logical expression. If the condition is log-
ically true, or arithmetically greater than zero, the
rest of the line is treated as if it were text — here
a command. If the condition is false, or zero or
negative, the rest of the line is skipped.

It is possible to do more than one command
if a condition is true. Suppose several operations
are to be done before section 1. One possibility is
to define a macro .S1.S1 and invoke it if we are about
to do section 1 (as determined by an .if.if).

.de S1
--- processing for section 1 ---
..
.de SH
...
.if \\n(SH=1 .S1
...
..

An alternate way is to use the extended
form of the .if.if, like this:

.if \\n(SH=1 \{--- processing
for section 1 ----\}

The braces \{\{ and \}\} must occur in the positions
shown or you will get unexpected extra lines in
your output. troff also provides an ‘if-else’ con-
struction, which we will not go into here.

A condition can be negated by preceding it
with !!; we get the same effect as above (but less
clearly) by using

.if !\\n(SH>1 .S1

There are a handful of other conditions that
can be tested with .if.if. For example, is the current
page even or odd?

.if e .tl ´´even page title´´

.if o .tl ´´odd page title´´

gives facing pages different titles when used inside
an appropriate new page macro.

Two other conditions are tt and nn, which tell
you whether the formatter is troff or nroff.

.if t troff stuff ...

.if n nroff stuff ...

Finally, string comparisons may be made in
an .if.if:

.if ´string1´string2´ stuff

does ‘stuff’ if string1 is the same as string2. The
character separating the strings can be anything
reasonable that is not contained in either string.
The strings themselves can reference strings with



-12-

\∗\∗, arguments with \$\$, and so on.

13. Environments

As we mentioned, there is a potential prob-
lem when going across a page boundary: parame-
ters like size and font for a page title may well be
different from those in effect in the text when the
page boundary occurs. troff provides a very gen-
eral way to deal with this and similar situations.
There are three ‘environments’, each of which has
independently settable versions of many of the
parameters associated with processing, including
size, font, line and title lengths, fill/nofill mode,
tab stops, and even partially collected lines. Thus
the titling problem may be readily solved by pro-
cessing the main text in one environment and
titles in a separate one with its own suitable
parameters.

The command .ev n.ev n shifts to environment nn;
nn must be 0, 1 or 2. The command .ev.ev with no
argument returns to the previous environment.
Environment names are maintained in a stack, so
calls for different environments may be nested and
unwound consistently.

Suppose we say that the main text is pro-
cessed in environment 0, which is where troff
begins by default. Then we can modify the new
page macro .NP.NP to process titles in environment 1
like this:

.de NP

.ev 1 \" shift to new environment

.lt 6i \" set parameters here

.ft R

.ps 10

... any other processing ...

.ev \" return to previous environment

..

It is also possible to initialize the parameters for
an environment outside the .NP.NP macro, but the
version shown keeps all the processing in one place
and is thus easier to understand and change.

14. Diversions

There are numerous occasions in page layout
when it is necessary to store some text for a period
of time without actually printing it. Footnotes are
the most obvious example: the text of the footnote
usually appears in the input well before the place
on the page where it is to be printed is reached.
In fact, the place where it is output normally
depends on how big it is, which implies that there
must be a way to process the footnote at least
enough to decide its size without printing it.

troff provides a mechanism called a diver-
sion for doing this processing. Any part of the
output may be diverted into a macro instead of
being printed, and then at some convenient time

the macro may be put back into the input.

The command .di xy.di xy begins a diversion —
all subsequent output is collected into the macro
xyxy until the command .di.di with no arguments is
encountered. This terminates the diversion. The
processed text is available at any time thereafter,
simply by giving the command

.xy

The vertical size of the last finished diversion is
contained in the built-in number register dndn.

As a simple example, suppose we want to
implement a ‘keep-release’ operation, so that text
between the commands .KS.KS and .KE.KE will not be
split across a page boundary (as for a figure or
table). Clearly, when a .KS.KS is encountered, we
have to begin diverting the output so we can find
out how big it is. Then when a .KE.KE is seen, we
decide whether the diverted text will fit on the
current page, and print it either there if it fits, or
at the top of the next page if it doesn’t. So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

..

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if \\n(dn>=\\n(.t .bp \" bp if doesn´t fit

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

..

Recall that number register nlnl is the current posi-
tion on the output page. Since output was being
diverted, this remains at its value when the diver-
sion started. dndn is the amount of text in the
diversion; .t.t (another built-in register) is the dis-
tance to the next trap, which we assume is at the
bottom margin of the page. If the diversion is
large enough to go past the trap, the .if.if is satis-
fied, and a .bp.bp is issued. In either case, the
diverted output is then brought back with .XX.XX. It
is essential to bring it back in no-fill mode so troff
will do no further processing on it.

This is not the most general keep-release,
nor is it robust in the face of all conceivable
inputs, but it would require more space than we
have here to write it in full generality. This sec-
tion is not intended to teach everything about
diversions, but to sketch out enough that you can
read existing macro packages with some compre-
hension.



-13-

Acknowledgements

I am deeply indebted to J. F. Ossanna, the
author of troff, for his repeated patient explana-
tions of fine points, and for his continuing willing-
ness to adapt troff to make other uses easier. I
am also grateful to Jim Blinn, Ted Dolotta, Doug
McIlroy, Mike Lesk and Joel Sturman for helpful
comments on this paper.

References

[1] J. F. Ossanna, NROFF/TROFF User’s Man-
ual, Bell Laboratories Computing Science
Technical Report 54, 1976.

[2] B. W. Kernighan, A System for Typesetting
Mathematics — User’s Guide (Second Edi-
tion), Bell Laboratories Computing Science
Technical Report 17, 1977.

[3] M. E. Lesk, TBL — A Program to Format
Tables, Bell Laboratories Computing Science
Technical Report 49, 1976.

[4] M. E. Lesk, Typing Documents on UNIX,
Bell Laboratories, 1978.

[5] J. R. Mashey and D. W. Smith, PWB/MM
— Programmer’s Workbench Memorandum
Macros, Bell Laboratories internal memo-
randum.



-14-

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character name on

the right.

ff \(ff fi \(fi fl \(fl ffi \(Fi ffl \(Fl
\(ru — \(em 1/4 \(14 1/2 \(12 3/4 \(34

⃝c \(co \(de † \(dg ′ \(fm c/ \(ct
⃝r \(rg • \(bu \(sq - \(hy

(In bold, \(sq is .)

The following are special-font characters:

+ \(pl − \(mi × \(mu ÷ \(di
= \(eq ≡ \(== ≥ \(>= ≤ \(<=
̸= \(!= ± \(+- ¬ \(no / \(sl
∼ \(ap ≃ \(˜= ∝ \(pt ∇ \(gr
→ \(-> ← \(<- ↑ \(ua ↓ \(da∫ \(is ∂ \(pd ∞ \(if √ \(sr
⊂ \(sb ⊃ \(sp ∪ \(cu ∩ \(ca
⊆ \(ib ⊇ \(ip ∈ \(mo ∅ \(es
´ \(aa ` \(ga ⃝ \(ci \(bs
§ \(sc ‡ \(dd ⇐ \(lh ⇒ \(rh \(lt  \(rt ⌈ \(lc ⌉ \(rc \(lb  \(rb ⌊ \(lf ⌋ \(rf \(lk  \(rk | \(bv ς \(ts

\(br | \(or \(ul \(rn
∗ \(∗∗

These four characters also have two-character names. The ´ is the apostrophe on terminals; the ` is

the other quote mark.

´ \´ ` \` − \− \

These characters exist only on the special font, but they do not have four-character names:

" { } < > ˜ ˆ \ # @

For greek, precede the roman letter by \(∗\(∗ to get the corresponding greek; for example, \(∗a\(∗a is α.

a b g d e z y h i k l m n c o p r s t u f x q w

α β γ δ ϵ ζ η θ ι κ λ µ ν ξ o π ρ σ τ υ ϕ χ ψ ω

A B G D E Z Y H I K LMN C O P R S T U F XQW

A B Γ ∆ E Z H Θ I K ΛMN Ξ O Π P Σ T Υ Φ X Ψ Ω



-15-

Index

! (negating conditionals)˜17 #$ (macro argument)˜16
#∗x, #(xy (invoke string macro)˜14 #b (bracketing
function)˜13 #d (subscript)˜11 #f (font change)˜5 #h
(horizontal motion)˜12 #nx, #n(xy (number register)˜15
#o (overstrike)˜13 #s (size change)˜3 #u (super-
script)˜11 #v (vertical motion)˜11 #w (width func-
tion)˜12 #z (zero motion)˜13 ′command instead of
ˆcommand˜9 % (page number register)˜10,15 ˆˆ (end of
macro definition)˜7 ˆbp˜9,10 ˆbr (break)˜9 ˆce (cen-
ter)˜2 ˆds (define string macro)˜7,14 ˆfi (fill)˜2 ˆft
(change font)˜5 ˆif (conditional test)˜16 ˆin (indent)˜6
ˆlg (set ligatures˜5 ˆll (line length)˜6 ˆnf (nofill)˜2 ˆnr
(set number register)˜14 ˆpn (page number)˜10 ˆps
(change point size)˜1,3 ˆsp (space)˜4 ˆss (set space
size)˜10 ˆta (set tab stops)˜11 ˆtc (set tab character)˜10
ˆtl (title)˜9 ˆtr (translate characters)˜2,6 ˆul (italicize)˜6
ˆvs (vertical spacing)˜3 ˆwh (when conditional)˜9,17
accents˜6,13 apostrophes˜6 arithmetic˜15 back-
slash˜1,3,5,14,16 begin page (ˆbp)˜9 block macros
(B1,B2)˜8 bold font (.ft B)˜5 boustrophedon˜12 bracket-
ing function (##b)˜13 break (ˆbr)˜9 break-causing com-
mmands˜9 centering (ˆce)˜2 changing fonts (ˆft, #f)˜5
changing macros˜15 character set˜4,5,19 character trans-
lation (ˆtr)˜2,6 columnated output˜10 commands˜1 com-
mands that cause break˜9 conditionals (ˆif)˜16 constant
proportion˜7 default break list˜9 define macro (ˆde)˜7
define string macro (ˆds)˜14 drawing lines˜11 em˜7,11
end of macro (ˆˆ)˜7 even page test (e)˜17 fill (ˆfi)˜2
fonts (ˆft)˜4,19 Greek (#(∗-)˜5,19 hanging indent
(ˆti)˜12 hints˜20 horizontal motion (#h)˜12 hp (horizon-
tal position register)˜15 hyphen˜6 i scale indicator˜4
indent (ˆin)˜6 index˜21 italic font (.ft I)˜4 italicize
(ˆul)˜6 legal point sizes˜3 ligatures (ff,fi,fl; ˆlg)˜5 line
length (ˆll)˜6 line spacing (ˆvs)˜3 local motions
(#u,#d,#v,#h,#w,#o,#z,#b)˜11 ff m scale indicator˜7
machine units˜4,12 macro arguments˜15 macros˜7
macros that change˜15 multiple backslashes˜14 negating
conditionals (!)˜17 new page macro (NP)˜8 nl (current
vertical position register)˜15 nofill (ˆnf)˜2 NROFF test
(n)˜17 nested quotes˜12 number registers (ˆnr,#n)˜14
numbered paragraphs˜12 odd page test (o)˜17 order of
evaluation˜14 overstrike (#o)˜13 p scale indicator˜3
page number register (%)˜10 page numbers (ˆpn,
ˆbp)˜10 paragraph macro (PG)˜7 Paternoster˜6 point
size (ˆps)˜1,3 previous font (#fP, ˆft P)˜5 previous point
size (#s0,ˆps)˜3 quotes˜6 relative change (±)˜6 ROFF˜1
ROFF header and footer˜8 Roman font (.ft R)˜4 scale
indicator i˜4 scale indicator m˜7 scale indicator p˜3 scale
indicator u˜12 scale indicators in arithmetic˜15 section
heading macro (SC)˜15 set space size (ˆss)˜10 size see
point size space (ˆsp)˜4 space between lines (ˆvs)˜3 spe-
cial characters (#(xx)˜5,19 string macros (ˆds,#∗)˜14
subscripts (#d)˜11 superscripts (#u)˜11 tab character
(ˆtc)˜11 tabs (ˆta)˜10 temporary indent (ˆti)˜7 titles
(ˆtl)˜8 translate (ˆtr)˜2,6,12 TROFF examples˜19
TROFF test (t)˜17 truncating division˜15 type faces
see fonts u scale indicator˜12 underline (ˆul)˜6 valid
point sizes˜3 vertical motion (#v)˜11 vertical position on
page˜9 vertical spacing (ˆvs)˜3 when (ˆwh)˜9,17 width
function (#w)˜12 width of digits˜10 zero motion
(#z)˜13


