
Changes to the Kernel in 4.2BSD

July 25, 1983

Samuel J. Leffler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

This document summarizes the changes to the kernel between the September 1981 4.1BSD
release and the July 1983 4.2BSD distribution. The information is presented in both overall terms
(e.g. organizational changes), and as specific comments about individual files. See the source code
itself for more details.

The system has undergone too many changes to detail everything. Instead the major areas
of change will pointed out, followed by a brief description of the contents of files present in the
4.1BSD release. Where important changes and/or bug fixes were applied they are described. The
networking support is not discussed in this document, refer to ‘‘4.2BSD Networking Implementa-
tion Notes’’ for a discussion of the internal structure of the network facilities.

Major changes include:

• organizational changes to isolate VAX specific portions of the system

• changes to support the new file system organization

• changes to support the new interprocess communication facilities

• changes for the new networking support; in particular, the DARPA standard Internet protocols
TCP, UDP, IP, and ICMP, and the network interface drivers which provide hardware support

• changes for the new signal facilities

• changes for the new time and interval timer facilities

• changes to eliminate references to global variables; in particular, the global variables u.u base,
u.u offset, u.u segflg, and u.u count have been almost completely replaced by uio structures
which are passed by reference; the u.u error variable has not been completely purged from low
level portions of the system, but is in many places now returned as a function value; the uio
changes were necessitated by the new scatter-gather i/o facilities

• changes for the new disk quota facilities

• changes for more flexible configuration of the disk space used for paging and swapping

1. Carrying over local software

With the massive changes made to the system, both in organization and in content, it may
take some time to understand how to carry over local software. The majority of this document is
devoted to describing the contents of each important source file in the system. If you have local
software other than device drivers to incorporate in the system you should first read this docu-
ment completely, then study the source code to more fully understand the changes as they affect
you.

Locally written device drivers will need to be converted to work in the new system. The
changes required of device drivers are:



-2-

1) The calling convention for the driver ioctl routine has changed. Any data copied in or out of
the system is now done at the highest level inside ioctl (). The third parameter to the driver
ioctl routine is a data buffer passed by reference. Values to be returned by a driver must be
copied into the associated buffer from which the system then copies them into the user
address space.

2) The read, write, and ioctl entry points in device drivers must return 0 or an error code from
<errno.h>.

3) The read and write entry points should no longer reference global variables out of the user
area. A new uio parameter is passed to these routines which should, in turn, be passed to
the physio () routine if the driver supports raw i/o.

4) Disk drivers which are to support swapping/paging must have a new routine which returns
the size, in sectors, of a disk partition. This value is used in calculating the size of swap-
ping/paging areas at boot time.

5) Code which previously used the iomove, passc, or cpass routines will have to be modified to
use the new uiomove, ureadc, and uwritec routines. The new routines all use a uio structure
to communicate the i/o base, offset, count, and segflag values previously passed globally in
the user area.

6) Include files have been rearranged and new ones have been created. Common machine-
dependent files such as mtpr.h, pte.h, reg.h, and psl.h are no longer in the ‘‘h’’ directory; see
below under organizational changes.

7) The handling of UNIBUS resets has changed. The reset routine should no longer deallocate
UNIBUS resources allocated to pending i/o requests (this is done in the ubareset routine).
For most drivers this means the reset routine simply needs to invalidate any ub info values
stored in local data structures to insure new UNIBUS resources will be allocated the next
time the ‘‘device start’’ routine is entered.

2. Organizational changes

The directory organization and file names are very different from 4.1BSD. The new direc-
tory layout breaks machine-specific and network-specific portions of the system out into separate
directories. A new file, machine is a symbolic link to a directory for the target machine, e.g. vax.
This allows a single set of sources to be shared between multiple machine types (by including
header files as ‘‘../machine/file’’). The directory naming conventions, as they relate to the net-
work support, are intended to allow expansion in supporting multiple ‘‘protocol families’’. The
following directories comprise the system sources for the VAX:

/sys/h machine independent include files
/sys/sys machine independent system source files
/sys/conf site configuration files and basic templates
/sys/net network independent, but network related code
/sys/netinet DARPA Internet code
/sys/netimp IMP support code
/sys/netpup PUP-1 support code
/sys/vax VAX specific mainline code
/sys/vaxif VAX network interface code
/sys/vaxmba VAX MASSBUS device drivers and related code
/sys/vaxuba VAX UNIBUS device drivers and related code

Files indicated as machine independent are shared among 4.2BSD systems running on the
VAX and Motorola 68010. Files indicated as machine dependent are located in directories indica-
tive of the machine on which they are used; the 4.2BSD release from Berkeley contains support
only for the VAX. Files marked network independent form the ‘‘core’’ of the networking subsys-
tem, and are shared among all network software; the 4.2BSD release from Berkeley contains



-3-

complete support only for the DARPA Internet protocols IP, TCP, UDP, and ICMP.

3. Bug fixes and changes

This section contains a brief description of each file which is not part of the network subsys-
tem, and also indicates important changes and bug fixes applied to the source code contained in
the file.

3.1. /sys/h

Files residing here are intended to be machine independent. Consequently, the header files
for device drivers which were present in this directory in 4.1BSD have been moved to other direc-
tories; e.g. /sys/vaxuba. Many files which had been duplicated in /usr/include are now present
only in /sys/h. Further, the 4.1BSD /usr/include/sys directory is now normally a symbolic link
to this directory. By having only a single copy of these files the ‘‘multiple update’’ problem no
longer occurs. (It is still possible to have /usr/include/sys be a copy of the /sys/h for sites where
it is not feasible to allow the general user community access to the system source code.)

The following files are new to /sys/h in 4.2BSD:

domain.h describes the internal structure of a communications domain; part of the new ipc
facilities

errno.h had previously been only in /usr/include; the file /usr/include/errno.h is now a
symbolic link to this file

fs.h replaces the old filsys.h description of the file system organization

gprof.h describes various data structures used in profiling the kernel; see gprof (1) for
details

kernel.h is an offshoot of systm.h and param.h; contains constants and definitions related
to the logical UNIX ‘‘kernel’’

mbuf.h describes the memory managment support used mostly by the network; see
‘‘4.2BSD Networking Implementation Notes’’ for more information

mman.h contains definitions for planned changes to the memory management facilities
(not implemented in 4.2BSD)

nami.h defines various structures and manifest constants used in conjunctions with the
namei routine (part of this file reflects future plans for changes to namei rather
than current use)

protosw.h contains a description of the protocol switch table and related manifest constants
and data structures use in communicating with routines located in the table

quota.h contains definitions related to the new disk quota facilities

resource.h contains definitions used in the getrusage, getrlimit, and getpriority system calls
(among others)

socket.h contains user-visible definitions related to the new socket ipc facilities

socketvar.h contains implementation definitions for the socket ipc facilities

ttychars.h contains definitions related to tty character handling; in particular, manifest con-
stants for the system standard erase, kill, interrupt, quit, etc. characters are
stored here (all the appropriate user programs use these manifest definitions)

ttydev.h contains definitions related to hardware specific portions of tty handling (such as
baud rates); to be expanded in the future

uio.h contains definitions for users wishing to use the new scatter-gather i/o facilities;
also contains the kernel uio structure used in implementing scatter-gather i/o

un.h contains user-visible definitions related to the ‘‘unix’’ ipc domain



-4-

unpcb.h contains the definition of the protocol control block used in the ‘‘unix’’ ipc
domain

wait.h contains definitions used in the wait and wait3 (2) system calls; previously in
/usr/include/wait.h

The following files have undergone significant change:

buf.h reflects the changes made to the buffer cache for the new file system organization
− buffers are variable sized with pages allocated to buffers on demand from a
pool of pages dedicated to the buffer cache; one new structure member has been
added to eliminate overloading of a commonly unreferenced structure member; a
new flag B CALL, when set, causes the function b iodone to be called when i/o
completes on a buffer (this is used to wakeup the pageout daemon); macros have
been added for manipulating the buffer queues, these replace the previous sub-
routines used to insert and delete buffers from the queues

conf.h reflects changes made in the handling of swap space and changes made for the
new select (2) system call; the block device table has a new member, d psize,
which returns the size of a disk partition, in sectors, given a major/minor value;
the character device table has a new member, d select, which is passed a dev t
value and an FREAD (FWRITE) flag and returns 1 when data may be read
(written), and 0 otherwise; the swdevt structure now includes the size, in sectors,
of a swap partition

dir.h is completely different since directory entries are now variable length; definitions
for the user level interface routines described in directory (3) are also present

file.h has a very different file structure definition and definitions for the new open and
flock system calls; symbolic definitions for many constants commonly supplied to
access and lseek, are also present

inode.h reflects the new hashed cacheing scheme as well additions made to the on-disk
and in-core inodes; on-disk inodes now contain a count of the actual number of
disk blocks allocated a file (used mostly by the disk quota facilities), larger time
stamps (for planned changes), more direct block pointers, and room for future
growth; in-core inodes have new fields for the advisory locking facilities, a back
pointer to the file system super block information (to eliminate lookups), and a
pointer to a structure used in implementing disk quotas.

ioctl.h has all request codes constructed from IO, IOR, IOW, and IOWR macros
which encode whether the request requires data copied in, out, or in and out of
the kernel address space; the size of the data parameter (in bytes) is also encoded
in the request, allowing the ioctl () routine to perform all user-kernel address
space copies

mount.h the mount structure has a new member used in the disk quota facilities

param.h has had numerous items deleted from it; in particular, many definitions logically
part of the ‘‘kernel’’ have been moved to kernel.h, and machine-dependent values
and definitions are now found in param.h files located in machine/param.h; con-
tains a manifest constant, NGROUPS, which defines the maximum size of the
group access list

proc.h has changed extensively as a result of the new signals, the different resource
usage structure, the disk quotas, and the new timers; in addition, new members
are present to simplify searching the process tree for siblings; the SDLYU and
SDETACH bits are gone, the former is replaced by a second parameter to pagein,
the latter is no longer needed due to changes in the handling of open’s on
/dev/tty by processes which have had their controlling terminal revoked with
vhangup



-5-

signal.h reflects the new signal facilities; several new signals have been added: SIGIO for
signal driven i/o; SIGURG for notification when an urgent condition arises; and
SIGPROF and SIGVTALRM for the new timer facilities; structures used in the
sigvec (2) and sigstack (2) system calls, as well as signal handler invocations are
defined here

stat.h has been updated to reflect the changes to the inode structure; in addition a new
field st blksize contains an ‘‘optimal blocking factor’’ for performing i/o (for files
this is the block size of the underlying file system)

systm.h has been trimmed back a bit as various items were moved to kernel.h

time.h contains the definitions for the new time and interval timer facilities; time zone
definitions for the half dozen time zones understood by the system are also
included here

tty.h reflects changes made to the internal structure of the terminal handler; the
‘‘local’’ structures have been merged into the standard flags and character defini-
tions though the user interface is virtually identical to that of 4.1BSD; the TTY-
HOG value has been changed from 256 to 255 to account for a counting problem
in the terminal handler on input buffer overflow

user.h has been extensively modified; members have been grouped and categorized to
reflect the ‘‘4.2BSD System Manual’’ presentation; new members have been
added and existing members changed to reflect: the new groups facilities, changes
to resource accounting and limiting, new timer facilities, and new signal facilities

vmmac.h has had many macro definitions changed to eliminate assumptions about the
hardware virtual memory support; in particular, the stack and user area page
table maps are no longer assumed to be adjacent or mapped by a single page
table base register

vmparam.h now includes machine-dependent definitions from a file machine/vmparam.h.

vmsystm.h has had several machine-dependent definitions moved to machine/vmparam.h

3.2. /sys/sys

This directory contains the ‘‘mainstream’’ kernel code. Files in this directory are intended to
be shared between 4.2BSD implementations on all machines. As there is little correspondence
between the current files in this directory and those which were present in 4.1BSD a general
overview of each files’s contents will be presented rather than a file-by-file comparison.

Files in the sys directory are named with prefixes which indicate their placement in the
internal system layering. The following table summarizes these naming conventions.

init system initialization
kern kernel (authentication, process management, etc.)
quota disk quotas
sys system calls and similar
tty terminal handling
ufs file system
uipc interprocess communication
vm virtual memory

3.2.1. Initialization code

init main.c contains system startup code

init sysent.c contains the definition of the sysent table − the table of system calls supported
by 4.2BSD



-6-

3.2.2. Kernel-level support

kern acct.c contains code used in per-process accounting

kern clock.c contains code for clock processing; work was done here to minimize time spent
in the hardclock routine; support for kernel profiling and statistics collection
from an alternate clock source have been added; a bug which caused the sys-
tem to lose time has been fixed; the code which drained terminal multiplexor
silos has been made the default mode of operation and moved to locore.s

kern descrip.c contains code for management of descriptors; descriptor related system calls
such as dup and close (the upper-most levels) are present here

kern exec.c contains code for the exec system call

kern exit.c contains code for the exit system call

kern fork.c contains code for the fork (and vfork) system call

kern mman.c contains code for memory management related calls; the contents of this file is
expected to change when the revamped memory management facilities are
added to the system

kern proc.c contains code related to process management; in particular, support routines
for process groups

kern prot.c contains code related to access control and protection; the notions of user ID,
group ID, and the group access list are implemented here

kern resource.c code related to resource accounting and limits; the getrusage and ‘‘get’’ and
‘‘set’’ resource limit system calls are found here

kern sig.c the signal facilities; in particular, kernel level routines for posting and process-
ing signals

kern subr.c support routines for manipulating the uio structure: uiomove, ureadc, and
uwritec

kern synch.c code related to process synchonization and scheduling: sleep and wakeup
among others

kern time.c code related to processing time; the handling of interval timers and time of
day

kern xxx.c miscellaneous system facilities and code for supporting 4.1BSD compatibility
mode (kernel level)

3.2.3. Disk quotas

quota kern.c ‘‘kernel’’ of disk quota suppport

quota subr.c miscellaneous support routines for disk quotas

quota sys.c disk quota system call routines

quota ufs.c portions of the disk quota facilities which interface to the file system routines

3.2.4. General subroutines

subr mcount.c code used when profiling the kernel

subr prf.c printf and friends; also, code related to handling of the diagnostic message
buffer

subr rmap.c subroutines which manage resource maps

subr xxx.c miscellaneous routines and code for routines implemented with special VAX
instructions, e.g. bcopy



-7-

3.2.5. System level support

sys generic.c code for the upper-most levels of the ‘‘generic’’ system calls: read, write, ioctl,
and select; a ‘‘must read’’ file for the system guru trying to shake out 4.1BSD
bad habits

sys inode.c code supporting the ‘‘generic’’ system calls of sys generic.c as they apply to
inodes; the guts of the byte stream file i/o interface

sys process.c code related to process debugging: ptrace and its support routine procxmt; this
file is expected to change as better process debugging facilities are developed

sys socket.c code supporting the ‘‘generic’’ system calls of sys generic.c as they apply to
sockets

3.2.6. Terminal handling

tty.c the terminal handler proper; both 4.1BSD and version 7 terminal interfaces
have been merged into a single set of routines which are selected as line disci-
plines; a bug which caused new line delays past column 127 to be calculated
incorrectly has been fixed; the high water marks for terminals running in tan-
dem mode at 19.2 or 38.4 kilobaud have been upped

tty bk.c the old Berknet line discipline (defunct)

tty conf.c initialized data structures related to terminal handling;

tty pty.c support for pseudo-terminals; actually two device drivers in one; additions over
4.1BSD pseudo-terminals include a simple ‘‘packet protocol’’ used to support
flow-control and output flushing on interrupt, as well as a ‘‘transparent’’ mode
used in programs such as emacs

tty subr.c c-list support routines

tty tb.c two line disciplines for supporting RS232 interfaces to Genisco and Hitachi
tablets

tty tty.c trivial support routines for ‘‘/dev/tty’’

3.2.7. File system support

ufs alloc.c code which handles allocation and deallocation of file system related resources:
disk blocks, on-disk inodes, etc.

ufs bio.c block i/o support; the buffer cache proper; see description of buf.h and ‘‘A Fast
File System for UNIX’’ for information

ufs bmap.c code which handles logical file system to logical disk block number mapping;
understands structure of indirect blocks and files with holes; handles automatic
extension of files on write

ufs dsort.c sort routine implementing prioritized seek sort algorithm for disk i/o opera-
tions

ufs fio.c code handling file system specific issues of access control and protection

ufs inode.c inode management routines; in-core inodes are now hashed and cached; inode
synchronization has been revamped since 4.1BSD to eliminate race conditions
present in 4.1

ufs mount.c code related to demountable file systems

ufs nami.c the namei routine (and related support routines) − the routine that maps
pathnames to inode numbers

ufs subr.c miscellaneous subroutines: this code is shared with certain user programs such
as fsck (8); for a good time look at the bufstats routine in this file



-8-

ufs syscalls.c file system related system calls, everything from open to unlink; many new sys-
tem calls are found here: rename, mkdir, rmdir, truncate, etc.

ufs tables.c static tables used in block and fragment accounting; this file is shared with
user programs such as fsck (8)

ufs xxx.c miscellaneous routines and 4.1BSD compatibility code; all of the code which
still understands the old inode format is in here

3.2.8. Interprocess communication

uipc domain.c code implementing the ‘‘communication domain’’ concept; this file must be
augmented to incorporate new domains

uipc mbuf.c memory management routines for the ipc and network facilities; refer to the
document ‘‘4.2BSD Networking Implementation Notes’’ for a detailed descrip-
tion of the routines in this file

uipc pipe.c leftover code for connecting two sockets into a pipe; actually a special case of
the code for the socketpair system call

uipc proto.c UNIX ipc communication domain configuration definitions; contains UNIX
domain data structure initialization

uipc socket.c top level socket support routines; these routines handle the interface to the
protocol request routines, move data between user address space and socket
data queues, understand the majority of the logic in process synchronization as
it relates to the ipc facilities

uipc socket2.c lower level socket support routines; provide nitty gritty bit twiddling of socket
data structures; manage placement of data on socket data queues

uipc syscalls.c user interface code to ipc system calls: socket, bind, connect, accept, etc.; con-
cerned exclusively with system call argument passing and validation

uipc usrreq.c UNIX ipc domain support; user request routine and supporting utility routines

3.2.9. Virtual memory support

The code in the virtual memory subsystem has changed very little from 4.1BSD; changes
made in these files were either to gain portability, handle the new swap space configuration
scheme, or fix bugs.

vm drum.c code for the management of disk space used in paging and swapping

vm mem.c management of physical memory; the ‘‘core map’’ is implemented here as well
as the routines which lock down pages for physical i/o (the latter will have to
change when the memory management facilities are modified to support shar-
ing of pages); a sign extension bug on block numbers extracted from the core
map has been fixed (this caused the system to crash with certain disk partition
layouts on RA81 disks)

vm mon.c support for virtual memory monitoring; code in this file is included in the sys-
tem only if the PGINPROF and/or TRACE options are configured

vm page.c the code which handles and processes page faults: pagein; race conditions in
accessing pages in transit and requests to lock pages for raw i/o have been
fixed in this code; a major path through pagein whose sole purpose was to
implement the software simulated reference bit has been ‘‘parallel coded’’ in
assembly language (this appears to decrease system time by at least 5% when
a system is paging heavily); pagein now has a second parameter indicating if
the page to be faulted in should be left locked (this eliminated the need for the
SDLYU flag in the proc structure)

vm proc.c mainly code to manage virtual memory allocation during process creation and
destruction (the virtual memory equivalent of ‘‘passing the buck’’ is done



-9-

here).

vm pt.c code for manipulating process page tables; knowledge of the user area is found
here as it relates to the user address space page tables

vm sched.c the code for process 0, the scheduler, lives here; other routines which monitor
and meter virtual memory activity (used in implementing high level scheduling
policies) also are present; this code has been better parameterized to isolate
machine-dependent heuristics used in the scheduling policies

vm subr.c miscellaneous routines: some for manipulating accessability of virtual memory,
others for mapping virtual addresses to logical segments (text, data, stack)

vm sw.c indirect driver for interleaved, multi-controller, paging area; modified to sup-
port interleaved partitions of different sizes

vm swap.c code to handle process related issues of swapping

vm swp.c code to handle swap i/o

vm text.c code to handle shared text segments − the ‘‘text’’ table

3.3. /sys/conf

This directory contains files used in configuring systems. The format of configuration files
has changed slightly; it is described completely in a new document ‘‘Building 4.2BSD UNIX Sys-
tems with Config’’. Several new files exist for use by the config (8) program, and several old files
have had their meaning changed slightly.

LINT a new configuration file for use in linting kernels

devices.vax maps block device names to major device numbers (on the VAX)

files now has only files containing machine-independent code

files.xxx (where xxx is a system name) optional, xxx-specific files files

files.vax new file describing files which contain machine-dependent code

makefile.vax makefile template specific to the VAX

param.c updated calculations of ntext and nfile to reflect network requirements; new
quantities added for disk quotas

3.3.1. /sys/vaxuba

This directory contains UNIBUS device drivers and their related include files. The latter
have moved from /sys/h in an effort to isolate machine-dependent portions of the system. The
following device drivers were not present in the 4.1BSD release.

ad.c a driver for the Data Translation A/D converter

ik.c an Ikonas frame buffer graphics interphase; user access to the device is implemented by
mapping the device registers directly into the virtual address space of a user (the rou-
tines to map memory are included in uba.c only if an Ikonas is configured in the sys-
tem)

kgclock.c
a driver for a DL11-W or KL11-W used as an auxiliary real-time clock source for ker-
nel profiling and/or statistics gathering; if this device is present, the system will auto-
matically collect its i/o statistics (and if profiling, pc samples) off the secondary clock;
very useful in kernel profiling as the second clock source eliminates most of the statisti-
cal anomalies and shows the true time spent in the clock routine

ps.c driver for an Evans and Sutherland Picture System 2

rl.c driver for RL11 controller with RL02 cartridge disks; does not support RL01 disks
though it should only require additions to disk geometry and partition tables



-10-

rx.c driver for RX211 floppy disk controller; provides both block and character device inter-
faces; ioctl calls support floppy disk formatting and ‘‘deleted data mark’’ sensing and
writing; makes a great paging device

ut.c driver for tape controllers which emulate a TU45 on the UNIBUS; in particular, the
System Industries Model 9700 triple density tape drive

uu.c driver for dual UNIBUS TU58 cartridge tape cassettes accessed through a DL11 serial
line; uses assembly language code in locore.s which provides pseudo-DMA on input
(necessary to avoid data overruns); using this driver while the system runs multi-user
degrades response severely (developed at Berkeley exclusively to produce distribution
TU58 cassettes)

In addition to the above device drivers, many drivers present in 4.1BSD now sport corre-
sponding include files which contain device register definitions. For example, the DH11 driver is
now broken into three files: dh.c, dhreg.h, and dmreg.h.

The following drivers have been significantly modified, or had bugs fixed in them, since the
4.1BSD release:

dh.c changes to reflect the revised tty data organization

dmf.c a bug where device register accesses caused unwitting modification of certain status
bits has been fixed; modem control has been fixed; a remnant of the DH11 include file
which caused incorrect definitions for even/odd parity has been fixed; changes to
reflect the revised tty data organization

dz.c now supports the DZ32; changes to reflect the revised tty data organization

lp.c now takes a non-zero flags value specified in the configuration file as the printer width
(default is 132 columns); thus, to configure an 80 column printer, include ‘‘flags 80’’ in
the device specification

rk.c a race condition has been fixed where a seek finishing on one drive appeared as an i/o
transfer completeing on another (this bug actually was present in all UNIBUS disk
drivers); changes for uio and swap space configuration

tm.c a typo which made the system crash with multiple slaves on a single controller has
been fixed; an incorrect priority level change in the watchdog timer routine which
caused the system to crash when a device operation timed out has been fixed; changes
for uio processing of raw i/o

ts.c changes for uio processing of raw i/o

uba.c a new support routine for allocating UNIBUS memory for memory-mapped devices
such as the 3Com Ethernet interface; the handling of UNIBUS resets has been
changed, all UNIBUS resources are now reclaimed in the ubareset routine prior to call-
ing individual device driver reset routines − this implies driver reset routines should no
longer free up allocated UNIBUS resources; new routines for mapping UNIBUS mem-
ory into the virtual address space of a process have been added to support the Ikonas
device driver; changes to fix the race condition described above in the RK07 device
driver; processes awaiting UNIBUS map registers now sleep on a different event than
those waiting for buffered data paths

uda.c the problem with multiplexing buffered data paths on an 11/750 has been fixed; a bug
in the setup of the ui dk field has been fixed; now properly defines the field indicating
the disk transfer rate; changes for uio processing and swap space configuration

up.c now supports ECC correction and bad sector forwarding; significant changes have been
made to make configuration of various disk drives simple (by probing the holding regis-
ter and using the resultant value indicating the number of tracks on the disk); the race
condition described under rk.c has been fixed; references to UNIBUS map registers are
now done with longword instructions so the device driver does not cause the system to
crash when an ECC or bad sector error occurs on a disk attached to a 730 UNIBUS;



-11-

the upSDIST/upRDIST parameters which control the use of search and seek opera-
tions on controllers with multiple drives have been made drive dependent; a bug
whereby the probe routine would belive certain non-existant drives were present has
been fixed; changes for uio processing and swap space configuration

va.c has been rewritten to honor the software support for exclusive access to the UNIBUS
so that the device may coexist on the same UNIBUS with RK07 disk drives; the driver
now works with controllers which have a GO bit

3.3.2. /sys/vax

The following files are new in 4.2BSD:

crt0.ex edit script for creating a profiled kernel

frame.h copied from /usr/include

in cksum.c checksum routine for the DARPA Internet protocols

param.h machine-dependent portion of /sys/h/param.h

pup cksum.c checksum routine for PUP-I protocols

rsp.h protocol definitions for communicating with a TU58

sys machdep.c
machine-dependent portion of the ‘‘sys *’’ files of /sys/sys

ufs machdep.c
machine-dependent portion of the ‘‘ufs *’’ files of /sys/sys

vm machdep.c
machine-dependent portion of the ‘‘vm *’’ files of /sys/sys

vmparam.h machine-dependent portion of /sys/h/vmparam.h

The following files have been modified for 4.2BSD:

Locore.c includes new definitions for linting the network and ipc code

asm.sed now massages insque, remque, and various routines which do byte swapping into
assembly language

autoconf.c handles MASSBUS drives which come on-line after the initial autoconfiguration
process; sizes and configures swap space at boot time in addition to calculating
the swap area allocation parameters dmtext, dmmax, and dmmin (which were
manifest constants in 4.1BSD); calculates the disk partition offset for system
dumps at boot time to take into account variable sized swap areas; now uses the
per-driver array of standard control status register addresses when probing for
devices on the UNIBUS; now allows MASSBUS tapes and disks to be wildcarded
across controllers

conf.c uses many ‘‘local’’ spaces for new and uncommon device drivers

genassym.c generates several new definitions for use in locore.s

locore.s includes code to vector software interrupts to protocol processing modules;
assembly language assist routines for the console and UNIBUS TU58 cassette
drives; a new routine, Fastreclaim is a fast coding of a major path through the
pagein routine; copyin and copyout now handle greater than 64Kbyte data copies
and return EFAULT on failure; understands the new signal trampoline code; now
contains code for draining terminal multiplexor silos at clock time; a bug where a
the translation buffer was sometimes being improperly flushed during a resume
operation has been fixed

machdep.c a bug which caused memory errors to not be reported on 11/750’s has been
fixed; has new code for handling the new signals; recovers from translation buffer
parity fault machine checks apparently caused by substandard memory chips
used in many 11/750’s; includes optional code to pinpoint bad memory chips on



-12-

Trendata memory boards; the machine check routine now calls the memerr rou-
tine to print out the memory controller status registers in case the fault occurred
because of a memory error

mem.c now has correct definitions to enable correctable memory error reporting on
11/750’s: DEC documentation incorrectly specifies use of the ICRD bit

pcb.h has changes related to the new signal trampoline code

swapgeneric.c supports more devices which can be used as a generic root device; interacts with
the new swap configuration code to size the swap area properly when running a
generic system; understands the special ‘‘swap on root’’ device syntax used when
installing the system

trap.c can be compiled with a SYSCALLTRACE define to allow system calls to be
traced when the variable syscalltrace is non-zero;

tu.c includes (limited) support for the TU58 console cassette on the 11/750, sufficient
for use in single-user mode; supports the use of the MRSP ROM on the 11/750.

3.3.3. /sys/vaxmba

The following bug fixes and modifications have been applied to the MASSBUS device
drivers:

hp.c a large number of disk drives attached to second vendor disk controllers are now auto-
matically recognized at boot time by probing the holding register and using disk geom-
etry information to decide what kind of drive is present; the hpSDIST/hpRDIST
parameters that control seek and search operations on controllers with multiple drives
have been made a per-drive parameter; a bug where the sector number reported on a
hard error was off by one has been fixed; the error recovery code now searches the bad
sector table when a header CRC error occurs; the error recovery code now handles bad
sectors on tracks which also have skip sectors; a bug in the handling of ECC errors has
been fixed; many separate driver data structures have been consolidated into the soft-
ware carrier structure; the driver handles the ML-11 solid-state disk

mba.c now autoconfigures MASSBUS tapes and disks which ‘‘come on-line’’ after the initial
boot

4. Standalone support

This section describes changes made to the standalone i/o facilities and the new methods
used in system bootstrapping.

4.1. Disk formatting

A new disk formatting program has been developed for use with non-DEC UNIBUS and
MASSBUS disk controllers. The format (8V) program has been tested mainly with disk drives
attached to Emulex MASSBUS and UNIBUS disk controllers, but should operate with any con-
troller which handles bad sector forwarding in an identical fashion to DEC RM03/RM05 or RM80
(but not RP06) disk controllers. The program runs standalone formatting disk headers and creat-
ing a bad sector table in the DEC standard 144 format.

4.2. Standalone i/o library

Changes to support more complex standalone i/o applications as well as changes for the new file
system organization, have resulted in significant revisions to the standalone i/o library. Device
drivers now support a new entry point for ioctl requests and library routines now return error
codes a la the UNIX system calls. In addition, standalone i/o library routines now make many
more internal consistency checks to verify data structures have not been corrupted by faulty
device drivers and that i/o errors have not occurred when reading critical file system information.
In conjunction with the new disk formatter, the up and hp standalone drivers have been rewritten



-13-

to support ECC correction and bad sector handling. These drivers are used in bootstrapping from
the console media on 11/780’s and 11/730’s thereby eliminating the requirement for error free root
partitions on disks attached to hp and up controllers. Many bugs in the standalone tape drivers
have been fixed.

4.3. System bootstrapping

On 11/780’s and 11/730’s, the console device is still used to load the ‘‘boot’’ program. This
in turn loads the system image from the root file system.

The method by which the system bootstraps on 11/750’s is different in 4.2BSD. The system
is still bootstrapped from disk using a boot block in sector 0 of the root file system partition, but
now this boot block simply reads in the next 7.5 kilobytes. The 7.5 kilobyte program is a version
of the ‘‘/boot’’ program loaded only with the device driver required to read the ‘‘/boot’’ program
from the root file system. The ‘‘/boot’’ program then reads in the system image, as done on
11/780’s and 11/730’s.

The additional level of bootstrap code was done to simplify the sector 0 boot programs and
minimize the total amount of assembly language code which had to be maintained. It was also
expected that 7.5 kilobytes would be sufficient to allow the new hp and up standalone drivers
which support ECC correction and bad sector handling to be used. Unfortunately, the standalone
system has not yet been trimmed down to allow the second level boot programs, loaded with the
new drivers, to fit in the space provided. Sites which have Winchester disk drives with bad sec-
tors in the root file system partition and which require this support should be able to trim the size
of the second level boot program to make it fit.


