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ABSTRACT

This document provides an introduction to the interprocess communication
facilities included in the 4.2BSD release of the VAX* UNIX** system.

It discusses the overall model for interprocess communication and intro-
duces the interprocess communication primitives which have been added to the
system. The majority of the document considers the use of these primitives in
developing applications. The reader is expected to be familiar with the C pro-
gramming language as all examples are written in C.

* DEC and VAX are trademarks of Digital Equipment Corporation.

** UNIX is a Trademark of Bell Laboratories.
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1. INTRODUCTION

One of the most important parts of 4.2BSD is the interprocess communication facilities. These
facilities are the result of more than two years of discussion and research. The facilities provided
in 4.2BSD incorporate many of the ideas from current research, while trying to maintain the
UNIX philosophy of simplicity and conciseness. It is hoped that the interprocess communication
facilities included in 4.2BSD will establish a standard for UNIX. From the response to the design,
it appears many organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior to
the 4.2BSD facilities, the only standard mechanism which allowed two processes to communicate
were pipes (the mpx files which were part of Version 7 were experimental). Unfortunately, pipes
are very restrictive in that the two communicating processes must be related through a common
ancestor. Further, the semantics of pipes makes them almost impossible to maintain in a dis-
tributed environment.

Earlier attempts at extending the ipc facilities of UNIX have met with mixed reaction. The
majority of the problems have been related to the fact these facilities have been tied to the UNIX
file system; either through naming, or implementation. Consequently, the ipc facilities provided in
4.2BSD have been designed as a totally independent subsystem. The 4.2BSD ipc allows processes
to rendezvous in many ways. Processes may rendezvous through a UNIX file system-like name
space (a space where all names are path names) as well as through a network name space. In
fact, new name spaces may be added at a future time with only minor changes visible to users.
Further, the communication facilities have been extended to included more than the simple byte
stream provided by a pipe-like entity. These extensions have resulted in a completely new part of
the system which users will need time to familiarize themselves with. It is likely that as more use
is made of these facilities they will be refined; only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces the new
system calls and the basic model of communication. Section 3 describes some of the supporting
library routines users may find useful in constructing distributed applications. Section 4 is con-
cerned with the client/server model used in developing applications and includes examples of the
two major types of servers. Section 5 delves into advanced topics which sophisticated users are
likely to encounter when using the ipc facilities.
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2. BASICS

The basic building block for communication is the socket. A socket is an endpoint of com-
munication to which a name may be bound. Each socket in use has a type and one or more associ-
ated processes. Sockets exist within communication domains. A communication domain is an
abstraction introduced to bundle common properties of processes communicating through sockets.
One such property is the scheme used to name sockets. For example, in the UNIX communication
domain sockets are named with UNIX path names; e.g. a socket may be named ‘‘/dev/foo’’.
Sockets normally exchange data only with sockets in the same domain (it may be possible to cross
domain boundaries, but only if some translation process is performed). The 4.2BSD ipc supports
two separate communication domains: the UNIX domain, and the Internet domain is used by pro-
cesses which communicate using the the DARPA standard communication protocols. The under-
lying communication facilities provided by these domains have a significant influence on the inter-
nal system implementation as well as the interface to socket facilities available to a user. An
example of the latter is that a socket ‘‘operating’’ in the UNIX domain sees a subset of the possi-
ble error conditions which are possible when operating in the Internet domain.

0.1. Socket types

Sockets are typed according to the communication properties visible to a user. Processes are
presumed to communicate only between sockets of the same type, although there is nothing that
prevents communication between sockets of different types should the underlying communication
protocols support this.

Three types of sockets currently are available to a user. A stream socket provides for the
bidirectional, reliable, sequenced, and unduplicated flow of data without record boundaries. Aside
from the bidirectionality of data flow, a pair of connected stream sockets provides an interface
nearly identical to that of pipes*.

A datagram socket supports bidirectional flow of data which is not promised to be
sequenced, reliable, or unduplicated. That is, a process receiving messages on a datagram socket
may find messages duplicated, and, possibly, in an order different from the order in which it was
sent. An important characteristic of a datagram socket is that record boundaries in data are pre-
served. Datagram sockets closely model the facilities found in many contemporary packet
switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which support
socket abstractions. These sockets are normally datagram oriented, though their exact character-
istics are dependent on the interface provided by the protocol. Raw sockets are not intended for
the general user; they have been provided mainly for those interested in developing new communi-
cation protocols, or for gaining access to some of the more esoteric facilities of an existing proto-
col. The use of raw sockets is considered in section 5.

Two potential socket types which have interesting properties are the sequenced packet socket
and the reliably delivered message socket. A sequenced packet socket is identical to a stream
socket with the exception that record boundaries are preserved. This interface is very similar to
that provided by the Xerox NS Sequenced Packet protocol. The reliably delivered message socket
has similar properties to a datagram socket, but with reliable delivery. While these two socket
types have been loosely defined, they are currently unimplemented in 4.2BSD. As such, in this
document we will concern ourselves only with the three socket types for which support exists.

0.2. Socket creation

To create a socket the socket system call is used:

* In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been

implemented internally as simply a pair of connected stream sockets.

DRAFT of 8 April 1993 Leffler/Fabry/Joy



4.2BSD IPC Primer -4- Basics

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified type.
A particular protocol may also be requested. If the protocol is left unspecified (a value of 0), the
system will select an appropriate protocol from those protocols which comprise the communication
domain and which may be used to support the requested socket type. The user is returned a
descriptor (a small integer number) which may be used in later system calls which operate on
sockets. The domain is specified as one of the manifest constants defined in the file
<sys/socket.h>. For the UNIX domain the constant is AF UNIX*; for the Internet domain
AF INET. The socket types are also defined in this file and one of SOCK STREAM,
SOCK DGRAM, or SOCK RAW must be specified. To create a stream socket in the Internet
domain the following call might be used:

s = socket(AF INET, SOCK STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the
underlying communication support. To create a datagram socket for on-machine use a sample call
might be:

s = socket(AF UNIX, SOCK DGRAM, 0);

To obtain a particular protocol one selects the protocol number, as defined within the com-
munication domain. For the Internet domain the available protocols are defined in
<netinet/in.h> or, better yet, one may use one of the library routines discussed in section 3, such
as getprotobyname:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
...
pp = getprotobyname("tcp");
s = socket(AF INET, SOCK STREAM, pp->p proto);

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of
memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol
(EPROTONOSUPPORT), or a request for a type of socket for which there is no supporting pro-
tocol (EPROTOTYPE).

0.3. Binding names

A socket is created without a name. Until a name is bound to a socket, processes have no
way to reference it and, consequently, no messages may be received on it. The bind call is used to
assign a name to a socket:

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting proto-
col(s). Its interpretation may vary from communication domain to communication domain (this is
one of the properties which comprise the ‘‘domain’’). In the UNIX domain names are path names
while in the Internet domain names contain an Internet address and port number. If one wanted
to bind the name ‘‘/dev/foo’’ to a UNIX domain socket, the following would be used:

bind(s, "/dev/foo", sizeof ("/dev/foo") − 1);

(Note how the null byte in the name is not counted as part of the name.) In binding an Internet
address things become more complicated. The actual call is simple,

* The manifest constants are named AF whatever as they indicate the ‘‘address format’’ to use in

interpreting names.
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#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr in sin;
...
bind(s, &sin, sizeof (sin));

but the selection of what to place in the address sin requires some discussion. We will come back
to the problem of formulating Internet addresses in section 3 when the library routines used in
name resolution are discussed.

0.4. Connection establishment

With a bound socket it is possible to rendezvous with an unrelated process. This operation
is usually asymmetric with one process a ‘‘client’’ and the other a ‘‘server’’. The client requests
services from the server by initiating a ‘‘connection’’ to the server’s socket. The server, when will-
ing to offer its advertised services, passively ‘‘listens’’ on its socket. On the client side the connect
call is used to initiate a connection. Using the UNIX domain, this might appear as,

connect(s, "server-name", sizeof ("server-name"));

while in the Internet domain,

struct sockaddr in server;
connect(s, &server, sizeof (server));

If the client process’s socket is unbound at the time of the connect call, the system will automati-
cally select and bind a name to the socket; c.f. section 5.4. An error is returned when the connec-
tion was unsuccessful (any name automatically bound by the system, however, remains). Other-
wise, the socket is associated with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most common are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was no
point in retrying the connection attempt any more. This usually occurs because the destina-
tion host is down, or because problems in the network resulted in transmissions being lost.

ECONNREFUSED
The host refused service for some reason. When connecting to a host running 4.2BSD this is
usually due to a server process not being present at the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client
host by the underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no route
to the network or host is present), or because of status information returned by intermediate
gateways or switching nodes. Many times the status returned is not sufficient to distinguish
a network being down from a host being down. In these cases the system is conservative
and indicates the entire network is unreachable.

For the server to receive a client’s connection it must perform two steps after binding its
socket. The first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to the listen call specifies the maximum number of outstanding connections
which may be queued awaiting acceptance by the server process. Should a connection be
requested while the queue is full, the connection will not be refused, but rather the individual
messages which comprise the request will be ignored. This gives a harried server time to make
room in its pending connection queue while the client retries the connection request. Had the
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connection been returned with the ECONNREFUSED error, the client would be unable to tell if
the server was up or not. As it is now it is still possible to get the ETIMEDOUT error back,
though this is unlikely. The backlog figure supplied with the listen call is limited by the system to
a maximum of 5 pending connections on any one queue. This avoids the problem of processes
hogging system resources by setting an infinite backlog, then ignoring all connection requests.

With a socket marked as listening, a server may accept a connection:

fromlen = sizeof (from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the server
wishes to find out who its client is, it may supply a buffer for the client socket’s name. The value-
result parameter fromlen is initialized by the server to indicate how much space is associated with
from, then modified on return to reflect the true size of the name. If the client’s name is not of
interest, the second parameter may be zero.

Accept normally blocks. That is, the call to accept will not return until a connection is
available or the system call is interrupted by a signal to the process. Further, there is no way for
a process to indicate it will accept connections from only a specific individual, or individuals. It is
up to the user process to consider who the connection is from and close down the connection if it
does not wish to speak to the process. If the server process wants to accept connections on more
than one socket, or not block on the accept call there are alternatives; they will be considered in
section 5.

0.5. Data transfer

With a connection established, data may begin to flow. To send and receive data there are
a number of possible calls. With the peer entity at each end of a connection anchored, a user can
send or receive a message without specifying the peer. As one might expect, in this case, then the
normal read and write system calls are useable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While send and recv are virtually identical to read and write, the extra flags argument is impor-
tant. The flags may be specified as a non-zero value if one or more of the following is required:

SOF OOB send/receive out of band data
SOF PREVIEW look at data without reading
SOF DONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
consider. The option to have data sent without routing applied to the outgoing packets is cur-
rently used only by the routing table management process, and is unlikely to be of interest to the
casual user. The ability to preview data is, however, of interest. When SOF PREVIEW is speci-
fied with a recv call, any data present is returned to the user, but treated as still ‘‘unread’’. That
is, the next read or recv call applied to the socket will return the data previously previewed.

0.6. Discarding sockets

Once a socket is no longer of interest, it may be discarded by applying a close to the
descriptor,

close(s);
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If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a
close takes place, the system will continue to attempt to transfer the data. However, after a fairly
long period of time, if the data is still undelivered, it will be discarded. Should a user have no use
for any pending data, it may perform a shutdown on the socket prior to closing it. This call is of
the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or
2 if no data is to be sent or received. Applying shutdown to a socket causes any data queued to
be immediately discarded.

0.7. Connectionless sockets

To this point we have been concerned mostly with sockets which follow a connection ori-
ented model. However, there is also support for connectionless interactions typical of the data-
gram facilities found in contemporary packet switched networks. A datagram socket provides a
symmetric interface to data exchange. While processes are still likely to be client and server,
there is no requirement for connection establishment. Instead, each message includes the destina-
tion address.

Datagram sockets are created as before, and each should have a name bound to it in order
that the recipient of a message may identify the sender. To send data, the sendto primitive is
used,

sendto(s, buf, buflen, flags, &to, tolen);

The s, buf, buflen, and flags parameters are used as before. The to and tolen values are used to
indicate the intended recipient of the message. When using an unreliable datagram interface, it is
unlikely any errors will be reported to the sender. Where information is present locally to recog-
nize a message which may never be delivered (for instance when a network is unreachable), the
call will return −1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive is provided:

recvfrom(s, buf, buflen, flags, &from, &fromlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially containing the size
of the from buffer.

In addition to the two calls mentioned above, datagram sockets may also use the connect call
to associate a socket with a specific address. In this case, any data sent on the socket will auto-
matically be addressed to the connected peer, and only data received from that peer will be deliv-
ered to the user. Only one connected address is permitted for each socket (i.e. no multi-casting).
Connect requests on datagram sockets return immediately, as this simply results in the system
recording the peer’s address (as compared to a stream socket where a connect request initiates
establishment of an end to end connection). Other of the less important details of datagram
sockets are described in section 5.

0.8. Input/Output multiplexing

One last facility often used in developing applications is the ability to multiplex i/o requests
among multiple sockets and/or files. This is done using the select call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Select takes as arguments three bit masks, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and
one for which exceptional conditions are pending. Bit masks are created by or-ing bits of the form
‘‘1 << fd’’. That is, a descriptor fd is selected if a 1 is present in the fd’th bit of the mask. The
parameter nfds specifies the range of file descriptors (i.e. one plus the value of the largest descrip-
tor) specified in a mask.
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A timeout value may be specified if the selection is not to last more than a predetermined
period of time. If timeout is set to 0, the selection takes the form of a poll, returning immediately.
If the last parameter is a null pointer, the selection will block indefinitely*. Select normally
returns the number of file descriptors selected. If the select call returns due to the timeout expir-
ing, then a value of −1 is returned along with the error number EINTR.

Select provides a synchronous multiplexing scheme. Asynchronous notification of output
completion, input availability, and exceptional conditions is possible through use of the SIGIO and
SIGURG signals described in section 5.

* To be more specific, a return takes place only when a descriptor is selectable, or when a signal is

received by the caller, interrupting the system call.
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3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network
addresses when using the interprocess communication facilities in a distributed environment. To
aid in this task a number of routines have been added to the standard C run-time library. In this
section we will consider the new routines provided to manipulate network addresses. While the
4.2BSD networking facilities support only the DARPA standard Internet protocols, these routines
have been designed with flexibility in mind. As more communication protocols become available,
we hope the same user interface will be maintained in accessing network-related address data
bases. The only difference should be the values returned to the user. Since these values are nor-
mally supplied the system, users should not need to be directly aware of the communication pro-
tocol and/or naming conventions in use.

Locating a service on a remote host requires many levels of mapping before client and server
may communicate. A service is assigned a name which is intended for human consumption; e.g.
‘‘the login server on host monet’’. This name, and the name of the peer host, must then be trans-
lated into network addresses which are not necessarily suitable for human consumption. Finally,
the address must then used in locating a physical location and route to the service. The specifics
of these three mappings is likely to vary between network architectures. For instance, it is desir-
able for a network to not require hosts be named in such a way that their physical location is
known by the client host. Instead, underlying services in the network may discover the actual
location of the host at the time a client host wishes to communicate. This ability to have hosts
named in a location independent manner may induce overhead in connection establishment, as a
discovery process must take place, but allows a host to be physically mobile without requiring it
to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network
names to network numbers, protocol names to protocol numbers, and service names to port num-
bers and the appropriate protocol to use in communicating with the server process. The file
<netdb.h> must be included when using any of these routines.

3.1. Host names

A host name to address mapping is represented by the hostent structure:

struct hostent {
char *h name; /* official name of host */
char **h aliases; /* alias list */
int h addrtype; /* host address type */
int h length; /* length of address */
char *h addr; /* address */

};

The official name of the host and its public aliases are returned, along with a variable length
address and address type. The routine gethostbyname(3N) takes a host name and returns a hos-
tent structure, while the routine gethostbyaddr(3N) maps host addresses into a hostent structure.
It is possible for a host to have many addresses, all having the same name. Gethostybyname
returns the first matching entry in the data base file /etc/hosts; if this is unsuitable, the lower
level routine gethostent(3N) may be used. For example, to obtain a hostent structure for a host
on a particular network the following routine might be used (for simplicity, only Internet addresses
are considered):
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#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
...
struct hostent *
gethostbynameandnet(name, net)

char *name;
int net;

{
register struct hostent *hp;
register char **cp;

sethostent(0);
while ((hp = gethostent()) != NULL) {

if (hp->h addrtype != AF INET)
continue;

if (strcmp(name, hp->h name)) {
for (cp = hp->h aliases; cp && *cp != NULL; cp++)

if (strcmp(name, *cp) == 0)
goto found;

continue;
}

found:
if (in netof(*(struct in addr *)hp->h addr)) == net)

break;
}
endhostent(0);
return (hp);

}

(in netof(3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network names

As for host names, routines for mapping network names to numbers, and back, are provided.
These routines return a netent structure:

/*
* Assumption here is that a network number
* fits in 32 bits -- probably a poor one.
*/
struct netent {

char *n name; /* official name of net */
char **n aliases; /* alias list */
int n addrtype; /* net address type */
int n net; /* network # */

};

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network counter-
parts to the host routines described above.

3.3. Protocol names

For protocols the protoent structure defines the protocol-name mapping used with the rou-
tines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N):
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struct protoent {
char *p name; /* official protocol name */
char **p aliases; /* alias list */
int p proto; /* protocol # */

};

3.4. Service names

Information regarding services is a bit more complicated. A service is expected to reside at
a specific ‘‘port’’ and employ a particular communication protocol. This view is consistent with
the Internet domain, but inconsistent with other network architectures. Further, a service may
reside on multiple ports or support multiple protocols. If either of these occurs, the higher level
library routines will have to be bypassed in favor of homegrown routines similar in spirit to the
‘‘gethostbynameandnet’’ routine described above. A service mapping is described by the servent
structure,

struct servent {
char *s name; /* official service name */
char **s aliases; /* alias list */
int s port; /* port # */
char *s proto; /* protocol to use */

};

The routine getservbyname(3N) maps service names to a servent structure by specifying a service
name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname("telnet", (char *)0);

returns the service specification for a telnet server using any protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N) and
getservent(3N) are also provided. The getservbyport routine has an interface similar to that pro-
vided by getservbyname; an optional protocol name may be specified to qualify lookups.

3.5. Miscellaneous

With the support routines described above, an application program should rarely have to
deal directly with addresses. This allows services to be developed as much as possible in a net-
work independent fashion. It is clear, however, that purging all network dependencies is very diffi-
cult. So long as the user is required to supply network addresses when naming services and
sockets there will always some network dependency in a program. For example, the normal code
included in client programs, such as the remote login program, is of the form shown in Figure 1.
(This example will be considered in more detail in section 4.)

If we wanted to make the remote login program independent of the Internet protocols and
addressing scheme we would be forced to add a layer of routines which masked the network depen-
dent aspects from the mainstream login code. For the current facilities available in the system
this does not appear to be worthwhile. Perhaps when the system is adapted to different network
architectures the utilities will be reorganized more cleanly.

Aside from the address-related data base routines, there are several other routines available
in the run-time library which are of interest to users. These are intended mostly to simplify
manipulation of names and addresses. Table 1 summarizes the routines for manipulating variable
length byte strings and handling byte swapping of network addresses and values.

The byte swapping routines are provided because the operating system expects addresses to
be supplied in network order. On a VAX, or machine with similar architecture, this is usually
reversed. Consequently, programs are sometimes required to byte swap quantities. The library
routines which return network addresses provide them in network order so that they may simply
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#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>
...
main(argc, argv)

char *argv[];
{

struct sockaddr in sin;
struct servent *sp;
struct hostent *hp;
int s;
...
sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

}
hp = gethostbyname(argv[1]);
if (hp == NULL) {

fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
exit(2);

}
bzero((char *)&sin, sizeof (sin));
bcopy(hp->h addr, (char *)&sin.sin addr, hp->h length);
sin.sin family = hp->h addrtype;
sin.sin port = sp->s port;
s = socket(AF INET, SOCK STREAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3);

}
...
if (connect(s, (char *)&sin, sizeof (sin)) < 0) {

perror("rlogin: connect");
exit(5);

}
...

}

Figure 1. Remote login client code.

Call Synopsis

bcmp(s1, s2, n) compare byte-strings; 0 if same, not 0 otherwise
bcopy(s1, s2, n) copy n bytes from s1 to s2
bzero(base, n) zero-fill n bytes starting at base
htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

Table 1. C run-time routines.
be copied into the structures provided to the system. This implies users should encounter the
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byte swapping problem only when interpreting network addresses. For example, if an Internet
port is to be printed out the following code would be required:

printf("port number %d\n", ntohs(sp->s port));

On machines other than the VAX these routines are defined as null macros.
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4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the
client/server model. In this scheme client applications request services from a server process.
This implies an asymmetry in establishing communication between the client and server which has
been examined in section 2. In this section we will look more closely at the interactions between
client and server, and consider some of the problems in developing client and server applications.

Client and server require a well known set of conventions before service may be rendered
(and accepted). This set of conventions comprises a protocol which must be implemented at both
ends of a connection. Depending on the situation, the protocol may be symmetric or asymmetric.
In a symmetric protocol, either side may play the master or slave roles. In an asymmetric proto-
col, one side is immutably recognized as the master, with the other the slave. An example of a
symmetric protocol is the TELNET protocol used in the Internet for remote terminal emulation.
An example of an asymmetric protocol is the Internet file transfer protocol, FTP. No matter
whether the specific protocol used in obtaining a service is symmetric or asymmetric, when access-
ing a service there is a ‘‘client process’’ and a ‘‘server process’’. We will first consider the proper-
ties of server processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clogging
the system while remaining dormant most of the time. The Xerox Courier protocol uses the latter
scheme. When using Courier, a Courier client process contacts a Courier server at the remote
host and identifies the service it requires. The Courier server process then creates the appropriate
server process based on a data base and ‘‘splices’’ the client and server together, voiding its part in
the transaction. This scheme is attractive in that the Courier server process may provide a single
contact point for all services, as well as carrying out the initial steps in authentication. However,
while this is an attractive possibility for standardizing access to services, it does introduce a cer-
tain amount of overhead due to the intermediate process involved. Implementations which pro-
vide this type of service within the system can minimize the cost of client server rendezvous. The
portal notion described in the ‘‘4.2BSD System Manual’’ embodies many of the ideas found in
Courier, with the rendezvous mechanism implemented internal to the system.

4.1. Servers

In 4.2BSD most servers are accessed at well known Internet addresses or UNIX domain
names. When a server is started at boot time it advertises it services by listening at a well know
location. For example, the remote login server’s main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}

This definition is used in later portions of the code to define the Internet port at which it listens
for service requests (indicated by a connection).

Step two is to disassociate the server from the controlling terminal of its invoker. This is
important as the server will likely not want to receive signals delivered to the process group of the
controlling terminal.

Once a server has established a pristine environment, it creates a socket and begins accept-
ing service requests. The bind call is required to insure the server listens at its expected location.
The main body of the loop is fairly simple:
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main(argc, argv)
int argc;
char **argv;

{
int f;
struct sockaddr in from;
struct servent *sp;

sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}
...

#ifndef DEBUG
<<disassociate server from controlling terminal>>

#endif
...
sin.sin port = sp->s port;
...
f = socket(AF INET, SOCK STREAM, 0);
...
if (bind(f, (caddr t)&sin, sizeof (sin)) < 0) {

...
}
...
listen(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g < 0) {

if (errno != EINTR)
perror("rlogind: accept");

continue;
}
if (fork() == 0) {

close(f);
doit(g, &from);

}
close(g);

}
}

Figure 2. Remote login server.
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for (;;) {
int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g < 0) {

if (errno != EINTR)
perror("rlogind: accept");

continue;
}
if (fork() == 0) {

close(f);
doit(g, &from);

}
close(g);

}

An accept call blocks the server until a client requests service. This call could return a failure sta-
tus if the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5). There-
fore, the return value from accept is checked to insure a connection has actually been established.
With a connection in hand, the server then forks a child process and invokes the main body of the
remote login protocol processing. Note how the socket used by the parent for queueing connection
requests is closed in the child, while the socket created as a result of the accept is closed in the
parent. The address of the client is also handed the doit routine because it requires it in authenti-
cating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the
separate, asymmetric roles of the client and server clearly in the code. The server is a passive
entity, listening for client connections, while the client process is an active entity, initiating a con-
nection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the
server process the first step is to locate the service definition for a remote login:

sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

}

Next the destination host is looked up with a gethostbyname call:

hp = gethostbyname(argv[1]);
if (hp == NULL) {

fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
exit(2);

}

With this accomplished, all that is required is to establish a connection to the server at the
requested host and start up the remote login protocol. The address buffer is cleared, then filled in
with the Internet address of the foreign host and the port number at which the login process
resides:

bzero((char *)&sin, sizeof (sin));
bcopy(hp->h addr, (char *)sin.sin addr, hp->h length);
sin.sin family = hp->h addrtype;
sin.sin port = sp->s port;
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A socket is created, and a connection initiated.

s = socket(hp->h addrtype, SOCK STREAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3);

}
...
if (connect(s, (char *)&sin, sizeof (sin)) < 0) {

perror("rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionless servers

While connection-based services are the norm, some services are based on the use of data-
gram sockets. One, in particular, is the ‘‘rwho’’ service which provides users with status informa-
tion for hosts connected to a local area network. This service, while predicated on the ability to
broadcast information to all hosts connected to a particular network, is of interest as an example
usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a
machine with the ruptime(1) program. The output generated is illustrated in Figure 3.

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59
calder up 10:10, 0 users, load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56
ernie down 0:24
esvax down 17:04
ingres down 0:26
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50
merlin down 19+15:37
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12
monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07
oz down 16:09
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

Status information for each host is periodically broadcast by rwho server processes on each
machine. The same server process also receives the status information and uses it to update a
database. This database is then interpreted to generate the status information for each host.
Servers operate autonomously, coupled only by the local network and its broadcast capabilities.

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks
performed by the server. The first task is to act as a receiver of status information broadcast by
other hosts on the network. This job is carried out in the main loop of the program. Packets
received at the rwho port are interrogated to insure they’ve been sent by another rwho server pro-
cess, then are time stamped with their arrival time and used to update a file indicating the status
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of the host. When a host has not been heard from for an extended period of time, the database
interpretation routines assume the host is down and indicate such on the status reports. This
algorithm is prone to error as a server may be down while a host is actually up, but serves our
current needs.

main()
{

...
sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin addr = inet makeaddr(INADDR ANY, net);
sin.sin port = sp->s port;
...
s = socket(AF INET, SOCK DGRAM, 0);
...
bind(s, &sin, sizeof (sin));
...
sigset(SIGALRM, onalrm);
onalrm();
for (;;) {

struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, &from, &len);
if (cc <= 0) {

if (cc < 0 && errno != EINTR)
perror("rwhod: recv");

continue;
}
if (from.sin port != sp->s port) {

fprintf(stderr, "rwhod: %d: bad from port\n",
ntohs(from.sin port));

continue;
}
...
if (!verify(wd.wd hostname)) {

fprintf(stderr, "rwhod: malformed host name from %x\n",
ntohl(from.sin addr.s addr));

continue;
}
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd hostname);
whod = open(path, FWRONLY|FCREATE|FTRUNCATE, 0666);
...
(void) time(&wd.wd recvtime);
(void) write(whod, (char *)&wd, cc);
(void) close(whod);

}
}

Figure 4. rwho server.

The second task performed by the server is to supply information regarding the status of its
host. This involves periodically acquiring system status information, packaging it up in a message
and broadcasting it on the local network for other rwho servers to hear. The supply function is
triggered by a timer and runs off a signal. Locating the system status information is somewhat
involved, but uninteresting. Deciding where to transmit the resultant packet does, however,
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indicates some problems with the current protocol.

Status information is broadcast on the local network. For networks which do not support
the notion of broadcast another scheme must be used to simulate or replace broadcasting. One
possibility is to enumerate the known neighbors (based on the status received). This, unfortu-
nately, requires some bootstrapping information, as a server started up on a quiet network will
have no known neighbors and thus never receive, or send, any status information. This is the
identical problem faced by the routing table management process in propagating routing status
information. The standard solution, unsatisfactory as it may be, is to inform one or more servers
of known neighbors and request that they always communicate with these neighbors. If each
server has at least one neighbor supplied it, status information may then propagate through a
neighbor to hosts which are not (possibly) directly neighbors. If the server is able to support net-
works which provide a broadcast capability, as well as those which do not, then networks with an
arbitrary topology may share status information*.

The second problem with the current scheme is that the rwho process services only a single
local network, and this network is found by reading a file. It is important that software operating
in a distributed environment not have any site-dependent information compiled into it. This
would require a separate copy of the server at each host and make maintenance a severe headache.
4.2BSD attempts to isolate host-specific information from applications by providing system calls
which return the necessary information†. Unfortunately, no straightforward mechanism currently
exists for finding the collection of networks to which a host is directly connected. Thus the rwho
server performs a lookup in a file to find its local network. A better, though still unsatisfactory,
scheme used by the routing process is to interrogate the system data structures to locate those
directly connected networks. A mechanism to acquire this information from the system would be
a useful addition.

* One must, however, be concerned about ‘‘loops’’. That is, if a host is connected to multiple net-

works, it will receive status information from itself. This can lead to an endless, wasteful, exchange of

information.

† An example of such a system call is the gethostname(2) call which returns the host’s ‘‘official’’ name.
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5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the ipc the mechanisms
already described will suffice in constructing distributed applications. However, others will find
need to utilize some of the features which we consider in this section.

5.1. Out of band data

The stream socket abstraction includes the notion of ‘‘out of band’’ data. Out of band data
is a logically independent transmission channel associated with each pair of connected stream
sockets. Out of band data is delivered to the user independently of normal data along with the
SIGURG signal. In addition to the information passed, a logical mark is placed in the data
stream to indicate the point at which the out of band data was sent. The remote login and
remote shell applications use this facility to propagate signals from between client and server pro-
cesses. When a signal is expected to flush any pending output from the remote process(es), all
data up to the mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reliable
delivery of at least one out of band message at a time. This message may contain at least one
byte of data, and at least one message may be pending delivery to the user at any one time. For
communications protocols which support only in-band signaling (i.e. the urgent data is delivered
in sequence with the normal data) the system extracts the data from the normal data stream and
stores it separately. This allows users to choose between receiving the urgent data in order and
receiving it out of sequence without having to buffer all the intervening data.

To send an out of band message the SOF OOB flag is supplied to a send or sendto calls,
while to receive out of band data SOF OOB should be indicated when performing a recvfrom or
recv call. To find out if the read pointer is currently pointing at the mark in the data stream, the
SIOCATMARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming out of
band data has arrived), the next read will provide data sent by the client prior to transmission of
the out of band signal. The routine used in the remote login process to flush output on receipt of
an interrupt or quit signal is shown in Figure 5.

5.2. Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated pro-
cess group (just as is done for terminals). This process group is initialized to the process group of
its creator, but may be redefined at a later time with the SIOCSPGRP ioctl:

ioctl(s, SIOCSPGRP, &pgrp);

A similar ioctl, SIOCGPGRP, is available for determining the current process group of a socket.

5.3. Pseudo terminals

Many programs will not function properly without a terminal for standard input and out-
put. Since a socket is not a terminal, it is often necessary to have a process communicating over
the network do so through a pseudo terminal. A pseudo terminal is actually a pair of devices,
master and slave, which allow a process to serve as an active agent in communication between
processes and users. Data written on the slave side of a pseudo terminal is supplied as input to a
process reading from the master side. Data written on the master side is given the slave as input.
In this way, the process manipulating the master side of the pseudo terminal has control over the
information read and written on the slave side. The remote login server uses pseudo terminals for
remote login sessions. A user logging in to a machine across the network is provided a shell with
a slave pseudo terminal as standard input, output, and error. The server process then handles the
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oob()
{

int out = 1+1;
char waste[BUFSIZ], mark;

signal(SIGURG, oob);
/* flush local terminal input and output */
ioctl(1, TIOCFLUSH, (char *)&out);
for (;;) {

if (ioctl(rem, SIOCATMARK, &mark) < 0) {
perror("ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof (waste));

}
recv(rem, &mark, 1, SOF OOB);
...

}

Figure 5. Flushing terminal i/o on receipt of out of band data.

communication between the programs invoked by the remote shell and the user’s local client pro-
cess. When a user sends an interrupt or quit signal to a process executing on a remote machine,
the client login program traps the signal, sends an out of band message to the server process who
then uses the signal number, sent as the data value in the out of band message, to perform a
killpg(2) on the appropriate process group.

5.4. Internet address binding

Binding addresses to sockets in the Internet domain can be fairly complex. Communicating
processes are bound by an association. An association is composed of local and foreign addresses,
and local and foreign ports. Port numbers are allocated out of separate spaces, one for each Inter-
net protocol. Associations are always unique. That is, there may never be duplicate <protocol,
local address, local port, foreign address, foreign port> tuples.

The bind system call allows a process to specify half of an association, <local address, local
port>, while the connect and accept primitives are used to complete a socket’s association. Since
the association is created in two steps the association uniqueness requirement indicated above
could be violated unless care is taken. Further, it is unrealistic to expect user programs to always
know proper values to use for the local address and local port since a host may reside on multiple
networks and the set of allocated port numbers is not directly accessible to a user.

To simplify local address binding the notion of a ‘‘wildcard’’ address has been provided.
When an address is specified as INADDR ANY (a manifest constant defined in <netinet/in.h>),
the system interprets the address as ‘‘any valid address’’. For example, to bind a specific port
number to a socket, but leave the local address unspecified, the following code might be used:
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#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr in sin;
...
s = socket(AF INET, SOCK STREAM, 0);
sin.sin family = AF INET;
sin.sin addr.s addr = INADDR ANY;
sin.sin port = MYPORT;
bind(s, (char *)&sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port num-
ber, and addressed to any of the possible addresses assigned a host. For example, if a host is on a
networks 46 and 10 and a socket is bound as above, then an accept call is performed, the process
will be able to accept connection requests which arrive either from network 46 or network 10.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the
system will select an appropriate port number for it. For example:

sin.sin addr.s addr = MYADDRESS;
sin.sin port = 0;
bind(s, (char *)&sin, sizeof (sin));

The system selects the port number based on two criteria. The first is that ports numbered 0
through 1023 are reserved for privileged users (i.e. the super user). The second is that the port
number is not currently bound to some other socket. In order to find a free port number in the
privileged range the following code is used by the remote shell server:

struct sockaddr in sin;
...
lport = IPPORT RESERVED − 1;
sin.sin addr.s addr = INADDR ANY;
...
for (;;) {

sin.sin port = htons((u short)lport);
if (bind(s, (caddr t)&sin, sizeof (sin)) >= 0)

break;
if (errno != EADDRINUSE && errno != EADDRNOTAVAIL) {

perror("socket");
break;

}
lport--;
if (lport == IPPORT RESERVED/2) {

fprintf(stderr, "socket: All ports in use\n");
break;

}
}

The restriction on allocating ports was done to allow processes executing in a ‘‘secure’’ environ-
ment to perform authentication based on the originating address and port number.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for
an application. This is due to associations being created in a two step process. For example, the
Internet file transfer protocol, FTP, specifies that data connections must always originate from the
same local port. However, duplicate associations are avoided by connecting to different foreign
ports. In this situation the system would disallow binding the same local address and port
number to a socket if a previous data connection’s socket were around. To override the default
port selection algorithm then an option call must be performed prior to address binding:
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setsockopt(s, SOL SOCKET, SO REUSEADDR, (char *)0, 0);
bind(s, (char *)&sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not vio-
late the uniqueness requirement as the system still checks at connect time to be sure any other
sockets with the same local address and port do not have the same foreign address and port (if an
association already exists, the error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly when a host is
on multiple networks. Logically, one would expect the system to bind the local address associated
with the network through which a peer was communicating. For instance, if the local host is con-
nected to networks 46 and 10 and the foreign host is on network 32, and traffic from network 32
were arriving via network 10, the local address to be bound would be the host’s address on net-
work 10, not network 46. This unfortunately, is not always the case. For reasons too complicated
to discuss here, the local address bound may be appear to be chosen at random. This property of
local address binding will normally be invisible to users unless the foreign host does not under-
stand how to reach the address selected*.

5.5. Broadcasting and datagram sockets

By using a datagram socket it is possible to send broadcast packets on many networks sup-
ported by the system (the network itself must support the notion of broadcasting; the system pro-
vides no broadcast simulation in software). Broadcast messages can place a high load on a net-
work since they force every host on the network to service them. Consequently, the ability to send
broadcast packets has been limited to the super user.

To send a broadcast message, an Internet datagram socket should be created:

s = socket(AF INET, SOCK DGRAM, 0);

and at least a port number should be bound to the socket:

sin.sin family = AF INET;
sin.sin addr.s addr = INADDR ANY;
sin.sin port = MYPORT;
bind(s, (char *)&sin, sizeof (sin));

Then the message should be addressed as:

dst.sin family = AF INET;
dst.sin addr.s addr = INADDR ANY;
dst.sin port = DESTPORT;

and, finally, a sendto call may be used:

sendto(s, buf, buflen, 0, &dst, sizeof (dst));

Received broadcast messages contain the senders address and port (datagram sockets are
anchored before a message is allowed to go out).

5.6. Signals

Two new signals have been added to the system which may be used in conjunction with the
interprocess communication facilities. The SIGURG signal is associated with the existence of an
‘‘urgent condition’’. The SIGIO signal is used with ‘‘interrupt driven i/o’’ (not presently imple-
mented). SIGURG is currently supplied a process when out of band data is present at a socket.
If multiple sockets have out of band data awaiting delivery, a select call may be used to determine
those sockets with such data.

* For example, if network 46 were unknown to the host on network 32, and the local address were

bound to that located on network 46, then even though a route between the two hosts existed through

network 10, a connection would fail.
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An old signal which is useful when constructing server processes is SIGCHLD. This signal is
delivered to a process when any children processes have changed state. Normally servers use the
signal to ‘‘reap’’ child processes after exiting. For example, the remote login server loop shown in
Figure 2 may be augmented as follows:

int reaper();
...
sigset(SIGCHLD, reaper);
listen(f, 10);
for (;;) {

int g, len = sizeof (from);

g = accept(f, &from, &len, 0);
if (g < 0) {

if (errno != EINTR)
perror("rlogind: accept");

continue;
}
...

}
...
#include <wait.h>
reaper()
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)
;

}

If the parent server process fails to reap its children, a large number of ‘‘zombie’’ processes
may be created.
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