
An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIX⃝r systems. It incorpo-
rates good features of other shells and a history mechanism similar to the redo of
INTERLISP. While incorporating many features of other shells which make writing
shell programs (shell scripts) easier, most of the features unique to csh are
designed more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with csh
is possible after reading just the first section of this document. The second sec-
tion describes the shells capabilities which you can explore after you have begun
to become acquainted with the shell. Later sections introduce features which are
useful, but not necessary for all users of the shell.

Back matter includes an appendix listing special characters of the shell and
a glossary of terms and commands introduced in this manual.

8 April 1993

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

Introduction

A shell is a command language interpreter. Csh is the name of one particular command
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a termi-
nal into system actions, such as invocation of other programs. Csh is a user program just like any
you might write. Hopefully, csh will be a very useful program for you in interacting with the UNIX

system.

In addition to this document, you will want to refer to a copy of the UNIX programmer’s
manual. The csh documentation in the manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of
commands, and words which have special meaning in discussing the shell and UNIX. Many of the
words are defined in a glossary at the end of this document. If you don’t know what is meant by
a word, you should look for it in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in its
debugging and in the debugging of its documentation. I would especially like to thank Michael
Ubell who made the crucial observation that history commands could be done well over the word
structure of input text, and implemented a prototype history mechanism in an older version of the
shell. Eric Allman has also provided a large number of useful comments on the shell, helping to
unify those concepts which are present and to identify and eliminate useless and marginally useful
features. Mike O’Brien suggested the pathname hashing mechanism which speeds command exe-
cution. Jim Kulp added the job control and directory stack primitives and added their documen-
tation to this introduction.

-2-

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other programs are invoked. While
it has a set of builtin functions which it performs directly, most commands cause execution of pro-
grams that are, in fact, external to the shell. The shell is thus distinguished from the command
interpreters of other systems both by the fact that it is just a user program, and by the fact that
it is used almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a command
name followed by arguments. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed, in this case the
mail program which sends messages to other users. The shell uses the name of the command in
attempting to execute it for you. It will look in a number of directories for a file with the name
mail which is expected to contain the mail program.

The rest of the words of the command are given as arguments to the command itself when it
is executed. In this case we specified also the argument bill which is interpreted by the mail pro-
gram to be the name of a user to whom mail is to be sent. In normal terminal usage we might
use the mail command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EOT
%

Here we typed a message to send to bill and ended this message with a ↑D which sent an
end-of-file to the mail program. (Here and throughout this document, the notation ‘‘↑x’’ is to be
read ‘‘control-x’’ and represents the striking of the x key while the control key is held down.) The
mail program then echoed the characters ‘EOT’ and transmitted our message. The characters ‘%
’ were printed before and after the mail command by the shell to indicate that input was needed.

After typing the ‘% ’ prompt the shell was reading command input from our terminal. We
typed a complete command ‘mail bill’. The shell then executed the mail program with argument
bill and went dormant waiting for it to complete. The mail program then read input from our ter-
minal until we signalled an end-of-file via typing a ↑D after which the shell noticed that mail had
completed and signaled us that it was ready to read from the terminal again by printing another
‘% ’ prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete com-
mand is typed at the terminal, the shell executes the command and when this execution com-
pletes, it prompts for a new command. If you run the editor for an hour, the shell will patiently
wait for you to finish editing and obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now is the tset command, which sets the
default erase and kill characters on your terminal − the erase character erases the last character
you typed and the kill character erases the entire line you have entered so far. By default, the
erase character is ‘#’ and the kill character is ‘@’. Most people who use CRT displays prefer to
use the backspace (↑H) character as their erase character since it is then easier to see what you
have typed so far. You can make this be true by typing

tset −e

which tells the program tset to set the erase character, and its default setting for this character is

-3-

a backspace.

1.2. Flag arguments

A useful notion in UNIX is that of a flag argument. While many arguments to commands
specify file names or user names some arguments rather specify an optional capability of the com-
mand which you wish to invoke. By convention, such arguments begin with the character ‘−’
(hyphen). Thus the command

ls

will produce a list of the files in the current working directory. The option −s is the size option,
and

ls −s

causes ls to also give, for each file the size of the file in blocks of 512 characters. The manual sec-
tion for each command in the UNIX reference manual gives the available options for each com-
mand. The ls command has a large number of useful and interesting options. Most other com-
mands have either no options or only one or two options. It is hard to remember options of com-
mands which are not used very frequently, so most UNIX utilities perform only one or two func-
tions rather than having a large number of hard to remember options.

1.3. Output to files

Commands that normally read input or write output on the terminal can also be executed
with this input and/or output done to a file.

Thus suppose we wish to save the current date in a file called ‘now’. The command

date

will print the current date on our terminal. This is because our terminal is the default standard
output for the date command and the date command prints the date on its standard output. The
shell lets us redirect the standard output of a command through a notation using the metacharac-
ter ‘>’ and the name of the file where output is to be placed. Thus the command

date > now

runs the date command such that its standard output is the file ‘now’ rather than the terminal.
Thus this command places the current date and time into the file ‘now’. It is important to know
that the date command was unaware that its output was going to a file rather than to the termi-
nal. The shell performed this redirection before the command began executing.

One other thing to note here is that the file ‘now’ need not have existed before the date
command was executed; the shell would have created the file if it did not exist. And if the file did
exist? If it had existed previously these previous contents would have been discarded! A shell
option noclobber exists to prevent this from happening accidentally; it is discussed in section 2.2.

The system normally keeps files which you create with ‘>’ and all other files. Thus the
default is for files to be permanent. If you wish to create a file which will be removed automati-
cally, you can begin its name with a ‘#’ character, this ‘scratch’ character denotes the fact that
the file will be a scratch file.* The system will remove such files after a couple of days, or sooner
if file space becomes very tight. Thus, in running the date command above, we don’t really want
to save the output forever, so we would more likely do

date > #now

*Note that if your erase character is a ‘#’, you will have to precede the ‘#’ with a ‘\’. The fact that

the ‘#’ character is the old (pre-CRT) standard erase character means that it seldom appears in a file

name, and allows this convention to be used for scratch files. If you are using a CRT, your erase char-

acter should be a ↑H, as we demonstrated in section 1.1 how this could be set up.

-4-

1.4. Metacharacters in the shell

The shell has a large number of special characters (like ‘>’) which indicate special functions.
We say that these notations have syntactic and semantic meaning to the shell. In general, most
characters which are neither letters nor digits have special meaning to the shell. We shall shortly
learn a means of quotation which allows us to use metacharacters without the shell treating them
in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need not
worry about placing shell metacharacters in a letter we are sending via mail, or when we are typ-
ing in text or data to some other program. Note that the shell is only reading input when it has
prompted with ‘% ’.

1.5. Input from files; pipelines

We learned above how to redirect the standard output of a command to a file. It is also pos-
sible to redirect the standard input of a command from a file. This is not often necessary since
most commands will read from a file whose name is given as an argument. We can give the com-
mand

sort < data

to run the sort command with standard input, where the command normally reads its input, from
the file ‘data’. We would more likely say

sort data

letting the sort command open the file ‘data’ for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the stan-
dard input, it would sort lines as we typed them on the terminal until we typed a ↑D to indicate
an end-of-file.

A most useful capability is the ability to combine the standard output of one command with
the standard input of another, i.e. to run the commands in a sequence known as a pipeline. For
instance the command

ls −s

normally produces a list of the files in our directory with the size of each in blocks of 512 charac-
ters. If we are interested in learning which of our files is largest we may wish to have this sorted
by size rather than by name, which is the default way in which ls sorts. We could look at the
many options of ls to see if there was an option to do this but would eventually discover that
there is not. Instead we can use a couple of simple options of the sort command, combining it
with ls to get what we want.

The −n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

ls −s | sort −n

specifies that the output of the ls command run with the option −s is to be piped to the command
sort run with the numeric sort option. This would give us a sorted list of our files by size, but
with the smallest first. We could then use the −r reverse sort option and the head command in
combination with the previous command doing

ls −s | sort −n −r | head −5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have
run this to the standard input of the sort command asking it to sort numerically in reverse order
(largest first). This output has then been run into the command head which gives us the first few
lines. In this case we have asked head for the first 5 lines. Thus this command gives us the names

-5-

and sizes of our 5 largest files.

The notation introduced above is called the pipe mechanism. Commands separated by ‘ | ’
characters are connected together by the shell and the standard output of each is run into the
standard input of the next. The leftmost command in a pipeline will normally take its standard
input from the terminal and the rightmost will place its standard output on the terminal. Other
examples of pipelines will be given later when we discuss the history mechanism; one important
use of pipes which is illustrated there is in the routing of information to the line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX pathnames
consist of a number of components separated by ‘/’. Each component except the last names a
directory in which the next component resides, in effect specifying the path of directories to follow
to reach the file. Thus the pathname

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory of the root directory ‘/’. Within this
directory the file named is ‘motd’ which stands for ‘message of the day’. A pathname that begins
with a slash is said to be an absolute pathname since it is specified from the absolute top of the
entire directory hierarchy of the system (the root). Pathnames which do not begin with ‘/’ are
interpreted as starting in the current working directory, which is, by default, your home directory
and can be changed dynamically by the cd change directory command. Such pathnames are said
to be relative to the working directory since they are found by starting in the working directory
and descending to lower levels of directories for each component of the pathname. If the path-
name contains no slashes at all then the file is contained in the working directory itself and the
pathname is merely the name of the file in this directory. Absolute pathnames have no relation to
the working directory.

Most filenames consist of a number of alphanumeric characters and ‘.’s (periods). In fact, all
printing characters except ‘/’ (slash) may appear in filenames. It is inconvenient to have most
non-alphabetic characters in filenames because many of these have special meaning to the shell.
The character ‘.’ (period) is not a shell-metacharacter and is often used to separate the extension
of a file name from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the
name that is left when a trailing ‘.’ and following characters which are not ‘.’ are stripped off).
The file ‘prog.c’ might be the source for a C program, the file ‘prog.o’ the corresponding object
file, the file ‘prog.errs’ the errors resulting from a compilation of the program and the file
‘prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation

prog.*

This word is expanded by the shell, before the command to which it is an argument is executed,
into a list of names which begin with ‘prog.’. The character ‘*’ here matches any sequence
(including the empty sequence) of characters in a file name. The names which match are alpha-
betically sorted and placed in the argument list of the command. Thus the command

echo prog.*

will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above.
The echo command receives four words as arguments, even though we only typed one word as as
argument directly. The four words were generated by filename expansion of the one input word.

-6-

Other notations for filename expansion are also available. The character ‘?’ matches any
single character in a filename. Thus

echo ? ?? ???

will echo a line of filenames; first those with one character names, then those with two character
names, and finally those with three character names. The names of each length will be indepen-
dently sorted.

Another mechanism consists of a sequence of characters between ‘[’ and ‘]’. This metase-
quence matches any single character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters around a ‘−’ in this notation to denote a
range. Thus

chap.[1−5]

might match files

chap.1 chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap.[12345]

and otherwise equivalent.

An important point to note is that if a list of argument words to a command (an argument
list) contains filename expansion syntax, and if this filename expansion syntax fails to match any
existing file names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character ‘.’ at the beginning are treated
specially. Neither ‘*’ or ‘?’ or the ‘[’ ‘]’ mechanism will match it. This prevents accidental match-
ing of the filenames ‘.’ and ‘..’ in the working directory which have special meaning to the system,
as well as other files such as .cshrc which are not normally visible. We will discuss the special role
of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home directory
of other users. This notation consists of the character ‘˜’ (tilde) followed by another users’ login
name. For instance the word ‘˜bill’ would map to the pathname ‘/usr/bill’ if the home directory
for ‘bill’ was ‘/usr/bill’. Since, on large systems, users may have login directories scattered over
many different disk volumes with different prefix directory names, this notation provides a reliable
way of accessing the files of other users.

A special case of this notation consists of a ‘˜’ alone, e.g. ‘˜/mbox’. This notation is
expanded by the shell into the file ‘mbox’ in your home directory, i.e. into ‘/usr/bill/mbox’ for me
on Ernie Co-vax, the UCB Computer Science Department VAX machine, where this document
was prepared. This can be very useful if you have used cd to change to another directory and
have found a file you wish to copy using cp. If I give the command

cp thatfile ˜

the shell will expand this command to

cp thatfile /usr/bill

since my home directory is /usr/bill.

-7-

There also exists a mechanism using the characters ‘{’ and ‘}’ for abbreviating a set of
words which have common parts but cannot be abbreviated by the above mechanisms because
they are not files, are the names of files which do not yet exist, are not thus conveniently
described. This mechanism will be described much later, in section 4.2, as it is used less fre-
quently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharacters
pose a problem in that we cannot use them directly as parts of words. Thus the command

echo *

will not echo the character ‘*’. It will either echo an sorted list of filenames in the current work-
ing directory, or print the message ‘No match’ if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers, digits, ‘/’,
‘.’ or ‘−’ in an argument word to a command is to enclose it with single quotation characters ‘´’,
i.e.

echo ´*´

There is one special character ‘!’ which is used by the history mechanism of the shell and which
cannot be escaped by placing it within ‘´’ characters. It and the character ‘´’ itself can be pre-
ceded by a single ‘\’ to prevent their special meaning. Thus

echo \´\!

prints

´!

These two mechanisms suffice to place any printing character into a word which is an argument to
a shell command. They can be combined, as in

echo \´´*´

which prints

´*

since the first ‘\’ escaped the first ‘´’ and the ‘*’ was enclosed between ‘´’ characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are sev-
eral ways to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely to
continue for several minutes unless you stop it. You can send an INTERRUPT signal to the cat
command by typing the DEL or RUBOUT key on your terminal.* Since cat does not take any pre-
cautions to avoid or otherwise handle this signal the INTERRUPT will cause it to terminate. The
shell notices that cat has terminated and prompts you again with ‘% ’. If you hit INTERRUPT

again, the shell will just repeat its prompt since it handles INTERRUPT signals and chooses to con-
tinue to execute commands rather than terminating like cat did, which would have the effect of
logging you out.

Another way in which many programs terminate is when they get an end-of-file from their
standard input. Thus the mail program in the first example above was terminated when we typed
a ↑D which generates an end-of-file from the standard input. The shell also terminates when it
gets an end-of-file printing ‘logout’; UNIX then logs you off the system. Since this means that

*Many users use stty (1) to change the interrupt character to ↑C.

-8-

typing too many ↑D’s can accidentally log us off, the shell has a mechanism for preventing this.
This ignoreeof option will be discussed in section 2.2.

If a command has its standard input redirected from a file, then it will normally terminate
when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a ↑D. This is because it read to the end-of-
file of our file ‘prepared.text’ in which we placed a message for ‘bill’ with an editor program. We
could also have done

cat prepared.text | mail bill

since the cat command would then have written the text through the pipe to the standard input
of the mail command. When the cat command completed it would have terminated, closing down
the pipeline and the mail command would have received an end-of-file from it and terminated.
Using a pipe here is more complicated than redirecting input so we would more likely use the first
form. These commands could also have been stopped by sending an INTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with
the possibility of continuing execution later. This is done by sending a STOP signal via typing a
↑Z. This signal causes all commands running on the terminal (usually one but more if a pipeline
is executing) to become suspended. The shell notices that the command(s) have been suspended,
types ‘Stopped’ and then prompts for a new command. The previously executing command has
been suspended, but otherwise unaffected by the STOP signal. Any other commands can be exe-
cuted while the original command remains suspended. The suspended command can be continued
using the fg command with no arguments. The shell will then retype the command to remind you
which command is being continued, and cause the command to resume execution. Unless any
input files in use by the suspended command have been changed in the meantime, the suspension
has no effect whatsoever on the execution of the command. This feature can be very useful dur-
ing editing, when you need to look at another file before continuing. An example of command sus-
pension follows.

% mail harold
Someone just copied a big file into my directory and its name is
↑Z
Stopped
% ls
funnyfile
prog.c
prog.o
% jobs
[1] + Stopped mail harold
% fg
mail harold
funnyfile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he
wanted to mention. The mail command was suspended by typing ↑Z. When the shell noticed
that the mail program was suspended, it typed ‘Stopped’ and prompted for a new command.
Then the ls command was typed to find out the name of the file. The jobs command was run to
find out which command was suspended. At this time the fg command was typed to continue exe-
cution of the mail program. Input to the mail program was then continued and ended with a ↑D
which indicated the end of the message at which time the mail program typed EOT. The jobs
command will show which commands are suspended. The ↑Z should only be typed at the begin-
ning of a line since everything typed on the current line is discarded when a signal is sent from the

-9-

keyboard. This also happens on INTERRUPT, and QUIT signals. More information on suspending
jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to stop
them somewhat ungracefully. This can be done by sending them a QUIT signal, sent by typing a
↑\. This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the program ‘a.out’s
state when it terminated due to the QUIT signal. You can examine this file yourself, or forward
information to the maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will
ignore INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill com-
mand. See section 2.6 for an example.

If you want to examine the output of a command without having it move off the screen as
the output of the

cat /etc/passwd

command will, you can use the command

more /etc/passwd

The more program pauses after each complete screenful and types ‘−−More−−’ at which point
you can hit a space to get another screenful, a return to get another line, or a ‘q’ to end the more
program. You can also use more as a filter, i.e.

cat /etc/passwd | more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the ↑S key to stop the
typeout. The typeout will resume when you hit ↑Q or any other key, but ↑Q is normally used
because it only restarts the output and does not become input to the program which is running.
This works well on low-speed terminals, but at 9600 baud it is hard to type ↑S and ↑Q fast
enough to paginate the output nicely, and a program like more is usually used.

An additional possibility is to use the ↑O flush output character; when this character is
typed, all output from the current command is thrown away (quickly) until the next input read
occurs or until the next shell prompt. This can be used to allow a command to complete without
having to suffer through the output on a slow terminal; ↑O is a toggle, so flushing can be turned
off by typing ↑O again while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way in
which it operates. The remaining sections will go yet further into the internals of the shell, but
you will surely want to try using the shell before you go any further. To try it you can log in to
UNIX and type the following command to the system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to get
onto the system. Thus I would use ‘chsh bill /bin/csh’. You only have to do this once; it
takes effect at next login. You are now ready to try using csh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system is
‘/bin/sh’. In fact, much of the above discussion is applicable to ‘/bin/sh’. The next section will
introduce many features particular to csh so you should change your shell to csh before you begin
reading it.

-10-

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login, the shell is started by the system in your home directory and begins by
reading commands from a file .cshrc in this directory. All shells which you may start during your
terminal session will read from this file. We will later see what kinds of commands are usefully
placed there. For now we need not have this file and the shell does not complain about its
absence.

A login shell, executed after you login to the system, will, after it reads commands from
.cshrc, read commands from a file .login also in your home directory. This file contains commands
which you wish to do each time you login to the UNIX system. My .login file looks something like:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${prompt}users" ; users
alias ts \

´set noglob ; eval `tset −s −m dialup:c100rv4pna −m plugboard:?hp2621nl *`´;
ts; stty intr ↑C kill ↑U crt
set time=15 history=10
msgs −f
if (−e $mail) then

echo "${prompt}mail"
mail

endif

This file contains several commands to be executed by UNIX each time I login. The first is a
set command which is interpreted directly by the shell. It sets the shell variable ignoreeof which
causes the shell to not log me off if I hit ↑D. Rather, I use the logout command to log off of the
system. By setting the mail variable, I ask the shell to watch for incoming mail to me. Every 5
minutes the shell looks for this file and tells me if more mail has arrived there. An alternative to
this is to put the command

biff y

in place of this set; this will cause me to be notified immediately when mail arrives, and to be
shown the first few lines of the new message.

Next I set the shell variable ‘time’ to ‘15’ causing the shell to automatically print out statis-
tics lines for commands which execute for at least 15 seconds of CPU time. The variable ‘history’
is set to 10 indicating that I want the shell to remember the last 10 commands I type in its his-
tory list, (described later).

I create an alias ‘‘ts’’ which executes a tset (1) command setting up the modes of the termi-
nal. The parameters to tset indicate the kinds of terminal which I usually use when not on a
hardwired port. I then execute ‘‘ts’’ and also use the stty command to change the interrupt char-
acter to ↑C and the line kill character to ↑U.

I then run the ‘msgs’ program, which provides me with any system messages which I have
not seen before; the ‘−f’ option here prevents it from telling me anything if there are no new mes-
sages. Finally, if my mailbox file exists, then I run the ‘mail’ program to process my mail.

When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processing my .login file and
begin reading commands from the terminal, prompting for each with ‘% ’. When I log off (by giv-
ing the logout command) the shell will print ‘logout’ and execute commands from the file ‘.logout’
if it exists in my home directory. After that the shell will terminate and UNIX will log me off the
system. If the system is not going down, I will receive a new login message. In any case, after the
‘logout’ message the shell is committed to terminating and will take no further input from my ter-
minal.

-11-

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history and time which
had values ‘10’ and ‘15’. In fact, each shell variable has as value an array of zero or more strings.
Shell variables may be assigned values by the set command. It has several forms, the most useful
of which was given above and is

set name=value

Shell variables may be used to store values which are to be used in commands later through
a substitution mechanism. The shell variables most commonly referenced are, however, those
which the shell itself refers to. By changing the values of these variables one can directly affect
the behavior of the shell.

One of the most important variables is the variable path. This variable contains a sequence
of directory names where the shell searches for commands. The set command with no arguments
shows the value of all variables currently defined (we usually say set) in the shell. The default
value for path will be shown by set to be

% set
argv ()
cwd /usr/bill
home /usr/bill
path (. /usr/ucb /bin /usr/bin)
prompt %
shell /bin/csh
status 0
term c100rv4pna
user bill
%

This output indicates that the variable path points to the current directory ‘.’ and then
‘/usr/ucb’, ‘/bin’ and ‘/usr/bin’. Commands which you may write might be in ‘.’ (usually one of
your directories). Commands developed at Berkeley, live in ‘/usr/ucb’ while commands developed
at Bell Laboratories live in ‘/bin’ and ‘/usr/bin’.

A number of locally developed programs on the system live in the directory ‘/usr/local’. If
we wish that all shells which we invoke to have access to these new programs we can place the
command

set path=(. /usr/ucb /bin /usr/bin /usr/local)

in our file .cshrc in our home directory. Try doing this and then logging out and back in and do

set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you insert
into your path and determines which commands are contained there. Except for the current
directory ‘.’, which the shell treats specially, this means that if commands are added to a directory
in your search path after you have started the shell, they will not necessarily be found by the
shell. If you wish to use a command which has been added in this way, you should give the com-
mand

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it
will find the newly added command. Since the shell has to look in the current directory ‘.’ on
each command, placing it at the end of the path specification usually works equivalently and
reduces overhead.

-12-

Other useful built in variables are the variable home which shows your home directory, cwd
which contains your current working directory, the variable ignoreeof which can be set in your
.login file to tell the shell not to exit when it receives an end-of-file from a terminal (as described
above). The variable ‘ignoreeof’ is one of several variables which the shell does not care about the
value of, only whether they are set or unset. Thus to set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable ‘ignoreeof’ no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variables noclobber and mail. The
metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous con-
tents of the named file. In this way you may accidentally overwrite a file which is valuable. If you
would prefer that the shell not overwrite files in this way you can

set noclobber

in your .login file. Then trying to do

date > now

would cause a diagnostic if ‘now’ existed already. You could type

date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>!’ is a special metasyntax indicat-
ing that clobbering the file is ok.†

2.3. The shell’s history list

The shell can maintain a history list into which it places the words of previous commands.
It is possible to use a notation to reuse commands or words from commands in forming new com-
mands. This mechanism can be used to repeat previous commands or to correct minor typing
mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechanism
of the shell. In this example we have a very simple C program which has a bug (or two) in it in
the file ‘bug.c’, which we ‘cat’ out on our terminal. We then try to run the C compiler on it,
referring to the file again as ‘!$’, meaning the last argument to the previous command. Here the
‘!’ is the history mechanism invocation metacharacter, and the ‘$’ stands for the last argument, by
analogy to ‘$’ in the editor which stands for the end of the line. The shell echoed the command,
as it would have been typed without use of the history mechanism, and then executed it. The
compilation yielded error diagnostics so we now run the editor on the file we were trying to com-
pile, fix the bug, and run the C compiler again, this time referring to this command simply as ‘!c’,
which repeats the last command which started with the letter ‘c’. If there were other commands
starting with ‘c’ done recently we could have said ‘!cc’ or even ‘!cc:p’ which would have printed
the last command starting with ‘cc’ without executing it.

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there still was
a bug, ran the editor again. After fixing the program we ran the C compiler again, but tacked
onto the command an extra ‘−o bug’ telling the compiler to place the resultant binary in the file
‘bug’ rather than ‘a.out’. In general, the history mechanisms may be used anywhere in the forma-
tion of new commands and other characters may be placed before and after the substituted

†The space between the ‘!’ and the word ‘now’ is critical here, as ‘!now’ would be an invocation of the

history mechanism, and have a totally different effect.

-13-

% cat bug.c
main()

{
printf("hello);

}
% cc !$
cc bug.c
"bug.c", line 4: newline in string or char constant
"bug.c", line 5: syntax error
% ed !$
ed bug.c
29
4s/);/"&/p

printf("hello");
w
30
q
% !c
cc bug.c
% a.out
hello% !e
ed bug.c
30
4s/lo/lo\\n/p

printf("hello\n");
w
32
q
% !c −o bug
cc bug.c −o bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% ls −l !*
ls −l a.out bug
−rwxr−xr−x 1 bill 3932 Dec 19 09:41 a.out
−rwxr−xr−x 1 bill 3932 Dec 19 09:42 bug
% bug
hello
% num bug.c | spp
spp: Command not found.
% ↑spp↑ssp
num bug.c | ssp

1 main()
3 {
4 printf("hello\n");
5 }

% !! | lpr
num bug.c | ssp | lpr
%

commands.

-14-

We then ran the ‘size’ command to see how large the binary program images we have cre-
ated were, and then an ‘ls −l’ command with the same argument list, denoting the argument list
‘*’. Finally we ran the program ‘bug’ to see that its output is indeed correct.

To make a numbered listing of the program we ran the ‘num’ command on the file ‘bug.c’.
In order to compress out blank lines in the output of ‘num’ we ran the output through the filter
‘ssp’, but misspelled it as spp. To correct this we used a shell substitute, placing the old text and
new text between ‘↑’ characters. This is similar to the substitute command in the editor. Finally,
we repeated the same command with ‘!!’, but sent its output to the line printer.

There are other mechanisms available for repeating commands. The history command prints
out a number of previous commands with numbers by which they can be referenced. There is a
way to refer to a previous command by searching for a string which appeared in it, and there are
other, less useful, ways to select arguments to include in a new command. A complete description
of all these mechanisms is given in the C shell manual pages in the UNIX Programmers Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input com-
mands. This mechanism can be used to simplify the commands you type, to supply default argu-
ments to commands, or to perform transformations on commands and their arguments. The alias
facility is similar to a macro facility. Some of the features obtained by aliasing can be obtained
also using shell command files, but these take place in another instance of the shell and cannot
directly affect the current shells environment or involve commands such as cd which must be done
in the current shell.

As an example, suppose that there is a new version of the mail program on the system
called ‘newmail’ you wish to use, rather than the standard mail program which is called ‘mail’. If
you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a call on ‘newmail’. More generally, suppose we wish the command ‘ls’ to always show sizes
of files, that is to always do ‘−s’. We can do

alias ls ls −s

or even

alias dir ls −s

creating a new command syntax ‘dir’ which does an ‘ls −s’. If we say

dir ˜bill

then the shell will translate this to

ls −s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other commands. It is also pos-
sible to define aliases which contain multiple commands or pipelines, showing where the argu-
ments to the original command are to be substituted using the facilities of the history mechanism.
Thus the definition

alias cd ´cd \!* ; ls ´

would do an ls command after each change directory cd command. We enclosed the entire alias
definition in ‘´’ characters to prevent most substitutions from occurring and the character ‘;’ from
being recognized as a metacharacter. The ‘!’ here is escaped with a ‘\’ to prevent it from being

-15-

interpreted when the alias command is typed in. The ‘\!*’ here substitutes the entire argument
list to the pre-aliasing cd command, without giving an error if there were no arguments. The ‘;’
separating commands is used here to indicate that one command is to be done and then the next.
Similarly the definition

alias whois ´grep \!↑ /etc/passwd´

defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a
large number of commands there, shells will tend to start slowly. A mechanism for saving the
shell environment after reading the .cshrc file and quickly restoring it is under development, but
for now you should try to limit the number of aliases you have to a reasonable number... 10 or 15
is reasonable, 50 or 60 will cause a noticeable delay in starting up shells, and make the system
seem sluggish when you execute commands from within the editor and other programs.

2.5. More redirection; >> and >&

There are a few more notations useful to the terminal user which have not been introduced
yet.

In addition to the standard output, commands also have a diagnostic output which is nor-
mally directed to the terminal even when the standard output is redirected to a file or a pipe. It
is occasionally desirable to direct the diagnostic output along with the standard output. For
instance if you want to redirect the output of a long running command into a file and wish to have
a record of any error diagnostic it produces you can do

command >& file

The ‘>&’ here tells the shell to route both the diagnostic output and the standard output into
‘file’. Similarly you can give the command

command |& lpr

to route both standard and diagnostic output through the pipe to the line printer daemon lpr.#

Finally, it is possible to use the form

command >> file

to place output at the end of an existing file.†

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands
separated by semicolons, a single job is created by the shell consisting of these commands together
as a unit. Single commands without pipes or semicolons create the simplest jobs. Usually, every
line typed to the shell creates a job. Some lines that create jobs (one per line) are

#A command form

command >&! file

exists, and is used when noclobber is set and file already exists.

†If noclobber is set, then an error will result if file does not exist, otherwise the shell will create file if it

doesn’t exist. A form

command >>! file

makes it not be an error for file to not exist when noclobber is set.

-16-

sort < data
ls −s | sort −n | head −5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is started as a
background job. This means that the shell does not wait for it to complete but immediately
prompts and is ready for another command. The job runs in the background at the same time
that normal jobs, called foreground jobs, continue to be read and executed by the shell one at a
time. Thus

du > usage &

would run the du program, which reports on the disk usage of your working directory (as well as
any directories below it), put the output into the file ‘usage’ and return immediately with a
prompt for the next command without out waiting for du to finish. The du program would con-
tinue executing in the background until it finished, even though you can type and execute more
commands in the mean time. When a background job terminates, a message is typed by the shell
just before the next prompt telling you that the job has completed. In the following example the
du job finishes sometime during the execution of the mail command and its completion is reported
just before the prompt after the mail job is finished.

% du > usage &
[1] 503
% mail bill
How do you know when a background job is finished?
EOT
[1] − Done du > usage
%

If the job did not terminate normally the ‘Done’ message might say something else like ‘Killed’. If
you want the terminations of background jobs to be reported at the time they occur (possibly
interrupting the output of other foreground jobs), you can set the notify variable. In the previous
example this would mean that the ‘Done’ message might have come right in the middle of the
message to Bill. Background jobs are unaffected by any signals from the keyboard like the STOP,
INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell
remembers the command names, arguments and the process numbers of all commands in the job
as well as the working directory where the job was started. Each job in the table is either running
in the foreground with the shell waiting for it to terminate, running in the background, or sus-
pended. Only one job can be running in the foreground at one time, but several jobs can be sus-
pended or running in the background at once. As each job is started, it is assigned a small identi-
fying number called the job number which can be used later to refer to the job in the commands
described below. Job numbers remain the same until the job terminates and then are re-used.

When a job is started in the backgound using ‘&’, its number, as well as the process num-
bers of all its (top level) commands, is typed by the shell before prompting you for another com-
mand. For example,

% ls −s | sort −n > usage &
[2] 2034 2035
%

runs the ‘ls’ program with the ‘−s’ options, pipes this output into the ‘sort’ program with the
‘−n’ option which puts its output into the file ‘usage’. Since the ‘&’ was at the end of the line,
these two programs were started together as a background job. After starting the job, the shell
prints the job number in brackets (2 in this case) followed by the process number of each program
started in the job. Then the shell immediates prompts for a new command, leaving the job run-
ning simultaneously.

-17-

As mentioned in section 1.8, foreground jobs become suspended by typing ↑Z which sends a
STOP signal to the currently running foreground job. A background job can become suspended by
using the stop command described below. When jobs are suspended they merely stop any further
progress until started again, either in the foreground or the backgound. The shell notices when a
job becomes stopped and reports this fact, much like it reports the termination of background
jobs. For foreground jobs this looks like

% du > usage
↑Z
Stopped
%

‘Stopped’ message is typed by the shell when it notices that the du program stopped. For back-
ground jobs, using the stop command, it is

% sort usage &
[1] 2345
% stop %1
[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you are
doing (execute other commands) and then return to the suspended job. Also, foreground jobs can
be suspended and then continued as background jobs using the bg command, allowing you to con-
tinue other work and stop waiting for the foreground job to finish. Thus

% du > usage
↑Z
Stopped
% bg
[1] du > usage &
%

starts ‘du’ in the foreground, stops it before it finishes, then continues it in the background allow-
ing more foreground commands to be executed. This is especially helpful when a foreground job
ends up taking longer than you expected and you wish you had started it in the backgound in the
beginning.

All job control commands can take an argument that identifies a particular job. All job
name arguments begin with the character ‘%’, since some of the job control commands also accept
process numbers (printed by the ps command.) The default job (when no argument is given) is
called the current job and is identified by a ‘+’ in the output of the jobs command, which shows
you which jobs you have. When only one job is stopped or running in the background (the usual
case) it is always the current job thus no argument is needed. If a job is stopped while running in
the foreground it becomes the current job and the existing current job becomes the previous job −
identified by a ‘−’ in the output of jobs. When the current job terminates, the previous job
becomes the current job. When given, the argument is either ‘%−’ (indicating the previous job);
‘%#’, where # is the job number; ‘%pref’ where pref is some unique prefix of the command name
and arguments of one of the jobs; or ‘%?’ followed by some string found in only one of the jobs.

The jobs command types the table of jobs, giving the job number, commands and status
(‘Stopped’ or ‘Running’) of each backgound or suspended job. With the ‘−l’ option the process
numbers are also typed.

-18-

% du > usage &
[1] 3398
% ls −s | sort −n > myfile &
[2] 3405
% mail bill
↑Z
Stopped
% jobs
[1] − Running du > usage
[2] Running ls −s | sort −n > myfile
[3] + Stopped mail bill
% fg %ls
ls −s | sort −n > myfile
% more myfile

The fg command runs a suspended or background job in the foreground. It is used to
restart a previously suspended job or change a background job to run in the foreground (allowing
signals or input from the terminal). In the above example we used fg to change the ‘ls’ job from
the background to the foreground since we wanted to wait for it to finish before looking at its out-
put file. The bg command runs a suspended job in the background. It is usually used after stop-
ping the currently running foreground job with the STOP signal. The combination of the STOP sig-
nal and the bg command changes a foreground job into a background job. The stop command sus-
pends a background job.

The kill command terminates a background or suspended job immediately. In addition to
jobs, it may be given process numbers as arguments, as printed by ps. Thus, in the example
above, the running du command could have been terminated by the command

% kill %1
[1] Terminated du > usage
%

The notify command (not the variable mentioned earlier) indicates that the termination of a
specific job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is then run in the foreground, input can be given to the job. If
desired, the job can be run in the background again until it requests input again. This is illus-
trated in the following sequence where the ‘s’ command in the text editor might take a long time.

% ed bigfile
120000
1,$s/thisword/thatword/
↑Z
Stopped
% bg
[1] ed bigfile &
%
. . . some foreground commands
[1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000
q
%

So after the ‘s’ command was issued, the ‘ed’ job was stopped with ↑Z and then put in the

-19-

background using bg. Some time later when the ‘s’ command was finished, ed tried to read
another command and was stopped because jobs in the backgound cannot read from the terminal.
The fg command returned the ‘ed’ job to the foreground where it could once again accept com-
mands from the terminal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to
the terminal. This prevents messages from background jobs from interrupting foreground job out-
put and allows you to run a job in the background without losing terminal output. It also can be
used for interactive programs that sometimes have long periods without interaction. Thus each
time it outputs a prompt for more input it will stop before the prompt. It can then be run in the
foreground using fg, more input can be given and, if necessary stopped and returned to the back-
ground. This stty command might be a good thing to put in your .login file if you do not like out-
put from background jobs interrupting your work. It also can reduce the need for redirecting the
output of background jobs if the output is not very big:

% stty tostop
% wc hugefile &
[1] 10387
% ed text
. . . some time later
q
[1] Stopped (tty output) wc hugefile
% fg wc
wc hugefile

13371 30123 302577
% stty −tostop

Thus after some time the ‘wc’ command, which counts the lines, words and characters in a file,
had one line of output. When it tried to write this to the terminal it stopped. By restarting it in
the foreground we allowed it to write on the terminal exactly when we were ready to look at its
output. Programs which attempt to change the mode of the terminal will also block, whether or
not tostop is set, when they are not in the foreground, as it would be very unpleasant to have a
background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows
nothing about background jobs started in other login sessions or within shell files. The ps can be
used in this case to find out about background jobs not started in the current shell.

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The
‘change directory’ command chdir (its short form cd may also be used) changes the working direc-
tory of the shell, that is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files
related to that project in that directory. The ‘make directory’ command, mkdir, creates a new
directory. The pwd (‘print working directory’) command reports the absolute pathname of the
working directory of the shell, that is, the directory you are located in. Thus in the example
below:

-20-

% pwd
/usr/bill
% mkdir newpaper
% chdir newpaper
% pwd
/usr/bill/newpaper
%

the user has created and moved to the directory newpaper. where, for example, he might place a
group of related files.

No matter where you have moved to in a directory hierarchy, you can return to your ‘home’
login directory by doing just

cd

with no arguments. The name ‘..’ always means the directory above the current one in the hierar-
chy, thus

cd ..

changes the shell’s working directory to the one directly above the current one. The name ‘..’ can
be used in any pathname, thus,

cd ../programs

means change to the directory ‘programs’ contained in the directory above the current one. If you
have several directories for different projects under, say, your home directory, this shorthand nota-
tion permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the variable
cwd. The shell can also be requested to remember the previous directory when you change to a
new working directory. If the ‘push directory’ command pushd is used in place of the cd com-
mand, the shell saves the name of the current working directory on a directory stack before chang-
ing to the new one. You can see this list at any time by typing the ‘directories’ command dirs.

% pushd newpaper/references
˜/newpaper/references ˜
% pushd /usr/lib/tmac
/usr/lib/tmac ˜/newpaper/references ˜
% dirs
/usr/lib/tmac ˜/newpaper/references ˜
% popd
˜/newpaper/references ˜
% popd
˜
%

The list is printed in a horizontal line, reading left to right, with a tilde (˜) as shorthand for your
home directory—in this case ‘/usr/bill’. The directory stack is printed whenever there is more
than one entry on it and it changes. It is also printed by a dirs command. Dirs is usually faster
and more informative than pwd since it shows the current working directory as well as any other
directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first direc-
tory in the list. The ‘pop directory’ popd command without an argument returns you to the direc-
tory you were in prior to the current one, discarding the previous current directory from the stack
(forgetting it). Typing popd several times in a series takes you backward through the directories
you had been in (changed to) by pushd command. There are other options to pushd and popd to
manipulate the contents of the directory stack and to change to directories not at the top of the
stack; see the csh manual page for details.

-21-

Since the shell remembers the working directory in which each job was started, it warns you
when you might be confused by restarting a job in the foreground which has a different working
directory than the current working directory of the shell. Thus if you start a background job,
then change the shell’s working directory and then cause the background job to run in the fore-
ground, the shell warns you that the working directory of the currently running foreground job is
different from that of the shell.

% dirs −l
/mnt/bill
% cd myproject
% dirs
˜/myproject
% ed prog.c
1143
↑Z
Stopped
% cd ..
% ls
myproject
textfile
% fg
ed prog.c (wd: ˜/myproject)

This way the shell warns you when there is an implied change of working directory, even though
no cd command was issued. In the above example the ‘ed’ job was still in ‘/mnt/bill/project’
even though the shell had changed to ‘/mnt/bill’. A similar warning is given when such a fore-
ground job terminates or is suspended (using the STOP signal) since the return to the shell again
implies a change of working directory.

% fg
ed prog.c (wd: ˜/myproject)
. . . after some editing
q
(wd now: ˜)
%

These messages are sometimes confusing if you use programs that change their own working direc-
tories, since the shell only remembers which directory a job is started in, and assumes it stays
there. The ‘−l’ option of jobs will type the working directory of suspended or background jobs
when it is different from the current working directory of the shell.

2.8. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing how they are used.

The alias command described above is used to assign new aliases and to show the existing
aliases. With no arguments it prints the current aliases. It may also be given only one argument
such as

alias ls

to show the current alias for, e.g., ‘ls’.

The echo command prints its arguments. It is often used in shell scripts or as an interactive
command to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with the
history events can be used to reference previous events which are difficult to reference using the
contextual mechanisms introduced above. There is also a shell variable called prompt. By placing
a ‘!’ character in its value the shell will there substitute the number of the current command in

-22-

the history list. You can use this number to refer to this command in a history substitution.
Thus you could

set prompt=´\! % ´

Note that the ‘!’ character had to be escaped here even within ‘´’ characters.

The limit command is used to restrict use of resources. With no arguments it prints the
current limitations:

cputime unlimited
filesize unlimited
datasize 5616 kbytes
stacksize 512 kbytes
coredumpsize unlimited

Limits can be set, e.g.:

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.

The logout command can be used to terminate a login shell which has ignoreeof set.

The rehash command causes the shell to recompute a table of where commands are located.
This is necessary if you add a command to a directory in the current shell’s search path and wish
the shell to find it, since otherwise the hashing algorithm may tell the shell that the command
wasn’t in that directory when the hash table was computed.

The repeat command can be used to repeat a command several times. Thus to make 5
copies of the file one in the file five you could do

repeat 5 cat one >> five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to ‘adm3a’. A user program printenv exists
which will print out the environment. It might then show:

% printenv
HOME=/usr/bill
SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a
USER=bill
%

The source command can be used to force the current shell to read commands from a file.
Thus

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect before the
next time you login.

The time command can be used to cause a command to be timed no matter how much CPU

time it takes. Thus

-23-

% time cp /etc/rc /usr/bill/rc
0.0u 0.1s 0:01 8% 2+1k 3+2io 1pf+0w
% time wc /etc/rc /usr/bill/rc

52 178 1347 /etc/rc
52 178 1347 /usr/bill/rc
104 356 2694 total

0.1u 0.1s 0:00 13% 3+3k 5+3io 7pf+0w
%

indicates that the cp command used a negligible amount of user time (u) and about 1/10th of a
system time (s); the elapsed time was 1 second (0:01), there was an average memory usage of 2k
bytes of program space and 1k bytes of data space over the cpu time involved (2+1k); the pro-
gram did three disk reads and two disk writes (3+2io), and took one page fault and was not
swapped (1pf+0w). The word count command wc on the other hand used 0.1 seconds of user
time and 0.1 seconds of system time in less than a second of elapsed time. The percentage ‘13%’
indicates that over the period when it was active the command ‘wc’ used an average of 13 percent
of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable definitions from
the shell, and unsetenv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more features
of the shell to be discussed here, and all features of the shell are discussed in its manual pages.
One useful feature which is discussed later is the foreach built-in command which can be used to
run the same command sequence with a number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and
the shell manual pages to become familiar with the other facilities which are available to you.

-24-

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and exe-
cute commands from these files, which are called shell scripts. We here detail those features of
the shell useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program called
make which is very useful for maintaining a group of related files or performing sets of operations
on related files. For instance a large program consisting of one or more files can have its depen-
dencies described in a makefile which contains definitions of the commands used to create these
different files when changes occur. Definitions of the means for printing listings, cleaning up the
directory in which the files reside, and installing the resultant programs are easily, and most
appropriately placed in this makefile. This format is superior and preferable to maintaining a
group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be created which defines how differ-
ent versions of the document are to be created and which options of nroff or troff are appropriate.

3.3. Invocation and the argv variable

A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and ‘...’ is replaced by a
sequence of arguments. The shell places these arguments in the variable argv and then begins to
read commands from the script. These parameters are then available through the same mecha-
nisms which are used to reference any other shell variables.

If you make the file ‘script’ executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a ‘#’ char-
acter) then a ‘/bin/csh’ will automatically be invoked to execute ‘script’ when you type

script

If the file does not begin with a ‘#’ then the standard shell ‘/bin/sh’ will be used to execute it.
This allows you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the input
line is parsed into distinct commands. Before each command is executed a mechanism know as
variable substitution is done on these words. Keyed by the character ‘$’ this substitution replaces
the names of variables by their values. Thus

echo $argv

when placed in a command script would cause the current value of the variable argv to be echoed
to the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables.
The notation

$?name

expands to ‘1’ if name is set or to ‘0’ if name is not set. It is the fundamental mechanism used for
checking whether particular variables have been assigned values. All other forms of reference to

-25-

undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name. Thus

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
0
% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus

$argv[1]

gives the first component of argv or in the example above ‘a’. Similarly

$argv[$#argv]

would give ‘c’, and

$argv[1−2]

would give ‘a b’. Other notations useful in shell scripts are

$n

where n is an integer as a shorthand for

$argv[n]

the n th parameter and

$*

which is a shorthand for

$argv

The form

$$

expands to the process number of the current shell. Since this process number is unique in the
system it can be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell’s standard input (not
the script it is reading). This is useful for writing shell scripts that are interactive, reading com-
mands from the terminal, or even writing a shell script that acts as a filter, reading lines from its
input file. Thus the sequence

echo ’yes or no?\c’
set a=($<)

would write out the prompt ‘yes or no?’ without a newline and then read the answer into the vari-
able ‘a’. In this case ‘$#a’ would be ‘0’ if either a blank line or end-of-file (↑D) was typed.

-26-

One minor difference between ‘$n ’ and ‘$argv[n]’ should be noted here. The form ‘$argv[n]’
will yield an error if n is not in the range ‘1−$#argv’ while ‘$n’ will never yield an out of range
subscript error. This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form ‘n−’; if
there are less than n components of the given variable then no words are substituted. A range of
the form ‘m−n’ likewise returns an empty vector without giving an error when m exceeds the
number of elements of the given variable, provided the subscript n is in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate expres-
sions in the shell based on the values of variables. In fact, all the arithmetic operations of the lan-
guage C are available in the shell with the same precedence that they have in C. In particular,
the operations ‘==’ and ‘!=’ compare strings and the operators ‘&&’ and ‘| |’ implement the
boolean and/or operations. The special operators ‘=˜’ and ‘!˜’ are similar to ‘==’ and ‘!=’
except that the string on the right side can have pattern matching characters (like *, ? or []) and
the test is whether the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

−? filename

where ‘?’ is replace by a number of single characters. For instance the expression primitive

−e filename

tell whether the file ‘filename’ exists. Other primitives test for read, write and execute access to
the file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form ‘{
command }’ which returns true, i.e. ‘1’ if the command succeeds exiting normally with exit status
0, or ‘0’ if the command terminates abnormally or with exit status non-zero. If more detailed
information about the execution status of a command is required, it can be executed and the vari-
able ‘$status’ examined in the next command. Since ‘$status’ is set by every command, it is very
transient. It can be saved if it is inconvenient to use it only in the single immediately following
command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and some of
its control structure follows:

-27-

% cat copyc
#
Copyc copies those C programs in the specified list
to the directory ˜/backup if they differ from the files
already in ˜/backup
#
set noglob
foreach i ($argv)

if ($i !˜ *.c) continue # not a .c file so do nothing

if (! −r ˜/backup/$i:t) then
echo $i:t not in backup... not cp\´ed
continue

endif

cmp −s $i ˜/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp $i ˜/backup/$i:t

endif
end

This script makes use of the foreach command, which causes the shell to execute the com-
mands between the foreach and the matching end for each of the values given between ‘(’ and ‘)’
with the named variable, in this case ‘i’ set to successive values in the list. Within this loop we
may use the command break to stop executing the loop and continue to prematurely terminate
one iteration and begin the next. After the foreach loop the iteration variable (i in this case) has
the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the members of argv. This
is a good idea, in general, if the arguments to a shell script are filenames which have already been
expanded or if the arguments may contain filename expansion metacharacters. It is also possible
to quote each use of a ‘$’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command
...

endif

The placement of the keywords here is not flexible due to the current implementation of the
shell.†

The shell does have another form of the if statement of the form

†The following two formats are not currently acceptable to the shell:

if (expression) # Won’t work!

then

command

...

endif

and

if (expression) then command endif # Won’t work

-28-

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve ‘ | ’,
‘&’ or ‘;’ and must not be another control command. The second form requires the final ‘\’ to
immediately precede the end-of-line.

The more general if statements above also admit a sequence of else−if pairs followed by a
single else and an endif, e.g.:

if (expression) then
commands

else if (expression) then
commands

...

else
commands

endif

Another important mechanism used in shell scripts is the ‘:’ modifier. We can use the modi-
fier ‘:r’ here to extract a root of a filename or ‘:e’ to extract the extension. Thus if the variable i
has the value ‘/mnt/foo.bar’ then

% echo $i $i:r $i:e
/mnt/foo.bar /mnt/foo bar
%

shows how the ‘:r’ modifier strips off the trailing ‘.bar’ and the the ‘:e’ modifier leaves only the
‘bar’. Other modifiers will take off the last component of a pathname leaving the head ‘:h’ or all
but the last component of a pathname leaving the tail ‘:t’. These modifiers are fully described in
the csh manual pages in the programmers manual. It is also possible to use the command substi-
tution mechanism described in the next major section to perform modifications on strings to then
reenter the shells environment. Since each usage of this mechanism involves the creation of a new
process, it is much more expensive to use than the ‘:’ modification mechanism.# Finally, we note
that the character ‘#’ lexically introduces a shell comment in shell scripts (but not from the ter-
minal). All subsequent characters on the input line after a ‘#’ are discarded by the shell. This
character can be quoted using ‘´’ or ‘\’ to place it in an argument word.

3.7. Other control structures

The shell also has control structures while and switch similar to those of C. These take the
forms

#It is also important to note that the current implementation of the shell limits the number of ‘:’

modifiers on a ‘$’ substitution to 1. Thus

% echo $i $i:h:t

/a/b/c /a/b:t

%

does not do what one would expect.

-29-

while (expression)
commands

end

and

switch (word)

case str1:
commands
breaksw

...

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to
exit from a switch while break exits a while or foreach loop. A common mistake to make in csh
scripts is to use break rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which is
running the script. This is different from previous shells running under UNIX. It allows shell
scripts to fully participate in pipelines, but mandates extra notation for commands which are to
take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an
example, consider this script which runs the editor to delete leading blanks from the lines in each
argument file

% cat deblank
deblank −− remove leading blanks
foreach i ($argv)
ed − $i << ´EOF´
1,$s/↑[]*//
w
q
´EOF´
end
%

The notation ‘<< ´EOF´’ means that the standard input for the ed command is to come from the
text in the shell script file up to the next line consisting of exactly ‘´EOF´’. The fact that the
‘EOF’ is enclosed in ‘´’ characters, i.e. quoted, causes the shell to not perform variable

-30-

substitution on the intervening lines. In general, if any part of the word following the ‘<<’ which
the shell uses to terminate the text to be given to the command is quoted then these substitutions
will not be performed. In this case since we used the form ‘1,$’ in our editor script we needed to
insure that this ‘$’ was not variable substituted. We could also have insured this by preceding the
‘$’ here with a ‘\’, i.e.:

1,\$s/↑[]*//

but quoting the ‘EOF’ terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell
script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a ‘goto label’ and
we can remove the temporary files and then do an exit command (which is built in to the shell) to
exit from the shell script. If we wish to exit with a non-zero status we can do

exit(1)

e.g. to exit with status ‘1’.

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbose and
echo options and the related −v and −x command line options can be used to help trace the
actions of the shell. The −n option causes the shell only to read commands and not to execute
them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which do not begin with the
character ‘#’, that is shell scripts that do not begin with a comment. Similarly, the ‘/bin/sh’ on
your system may well defer to ‘csh’ to interpret shell scripts which begin with ‘#’. This allows
shell scripts for both shells to live in harmony.

There is also another quotation mechanism using ‘"’ which allows only some of the expan-
sion mechanisms we have so far discussed to occur on the quoted string and serves to make this
string into a single word as ‘´’ does.

-31-

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal to aid in per-
forming a number of similar commands. For instance, there were at one point three shells in use
on the Cory UNIX system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the
number of persons using each shell one could have issued the commands

% grep −c csh$ /etc/passwd
27
% grep −c nsh$ /etc/passwd
128
% grep −c −v sh$ /etc/passwd
430
%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i (´sh$´ ´csh$´ ´−v sh$´)
? grep −c $i /etc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with ‘? ’ when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You
can, for example, do

% set a=(`ls`)
% echo $a
csh.n csh.rm
% ls
csh.n
csh.rm
% echo $#a
2
%

The set command here gave the variable a a list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within ‘`’ characters is converted by the shell to a list of words.
You can also place the ‘`’ quoted string within ‘"’ characters to take each (non-empty) line as a
component of the variable; preventing the lines from being split into words at blanks and tabs. A
modifier ‘:x’ exists which can be used later to expand each component of the variable into another
variable splitting it into separate words at embedded blanks and tabs.

4.2. Braces { ... } in argument expansion

Another form of filename expansion, alluded to before involves the characters ‘{’ and ‘}’.
These characters specify that the contained strings, separated by ‘,’ are to be consecutively substi-
tuted into the containing characters and the results expanded left to right. Thus

A{str1,str2,...strn}B

expands to

-32-

Astr1B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e.
nested). The results of each expanded string are sorted separately, left to right order being pre-
served. The resulting filenames are not required to exist if no other expansion mechanisms are
used. This means that this mechanism can be used to generate arguments which are not file-
names, but which have common parts.

A typical use of this would be

mkdir ˜/{hdrs,retrofit,csh}

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is most
useful when the common prefix is longer than in this example, i.e.

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how ex}}

4.3. Command substitution

A command enclosed in ‘`’ characters is replaced, just before filenames are expanded, by the
output from that command. Thus it is possible to do

set pwd=`pwd`

to save the current directory in the variable pwd or to do

ex `grep −l TRACE *.c`

to run the editor ex supplying as arguments those files whose names end in ‘.c’ which have the
string ‘TRACE’ in them.*

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of dif-
ferent substitutions performed by the shell. The exact meaning of certain combinations of quota-
tions is also occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX pro-
grams, and debugging shell scripts. See the shells manual section for a list of these options.

*Command expansion also occurs in input redirected with ‘<<’ and within ‘"’ quotations. Refer to

the shell manual section for full details.

-33-

Appendix − Special characters

The following table lists the special characters of csh and the UNIX system, giving for each the sec-
tion(s) in which it is discussed. A number of these characters also have special meaning in expres-
sions. See the csh manual section for a complete list.

Syntactic metacharacters

; 2.4 separates commands to be executed sequentially
| 1.5 separates commands in a pipeline
() 2.2,3.6 brackets expressions and variable values
& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters

/ 1.6 separates components of a file’s pathname
? 1.6 expansion character matching any single character
* 1.6 expansion character matching any sequence of characters
[] 1.6 expansion sequence matching any single character from a set
˜ 1.6 used at the beginning of a filename to indicate home directories
{ } 4.2 used to specify groups of arguments with common parts

Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character
´ 1.7 prevents meta-meaning of a group of characters
" 4.3 like ´, but allows variable and command expansion

Input/output metacharacters

< 1.5 indicates redirected input
> 1.3 indicates redirected output

Expansion/substitution metacharacters

$ 3.4 indicates variable substitution
! 2.3 indicates history substitution
: 3.6 precedes substitution modifiers
↑ 2.3 used in special forms of history substitution
` 4.3 indicates command substitution

Other metacharacters

1.3,3.6 begins scratch file names; indicates shell comments
− 1.2 prefixes option (flag) arguments to commands
% 2.6 prefixes job name specifications

-34-

Glossary

This glossary lists the most important terms introduced in the introduction to the shell and
gives references to sections of the shell document for further information about them. References
of the form ‘pr (1)’ indicate that the command pr is in the UNIX programmer’s manual in section
1. You can get an online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this
manual.

. Your current directory has the name ‘.’ as well as the name printed by the com-
mand pwd; see also dirs. The current directory ‘.’ is usually the first component
of the search path contained in the variable path, thus commands which are in ‘.’
are found first (2.2). The character ‘.’ is also used in separating components of
filenames (1.6). The character ‘.’ at the beginning of a component of a pathname
is treated specially and not matched by the filename expansion metacharacters
‘?’, ‘*’, and ‘[’ ‘]’ pairs (1.6).

.. Each directory has a file ‘..’ in it which is a reference to its parent directory.
After changing into the directory with chdir, i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

The current directory is printed by pwd (2.7).

a.out Compilers which create executable images create them, by default, in the file
a.out. for historical reasons (2.3).

absolute pathname
A pathname which begins with a ‘/’ is absolute since it specifies the path of direc-
tories from the beginning of the entire directory system − called the root direc-
tory. Pathnames which are not absolute are called relative (see definition of rela-
tive pathname) (1.6).

alias An alias specifies a shorter or different name for a UNIX command, or a transfor-
mation on a command to be performed in the shell. The shell has a command
alias which establishes aliases and can print their current values. The command
unalias is used to remove aliases (2.4).

argument Commands in UNIX receive a list of argument words. Thus the command

echo a b c

consists of the command name ‘echo’ and three argument words ‘a’, ‘b’ and ‘c’.
The set of arguments after the command name is said to be the argument list of
the command (1.1).

argv The list of arguments to a command written in the shell language (a shell script
or shell procedure) is stored in a variable called argv within the shell. This name
is taken from the conventional name in the C programming language (3.4).

background Commands started without waiting for them to complete are called background
commands (2.6).

base A filename is sometimes thought of as consisting of a base part, before any ‘.’
character, and an extension − the part after the ‘.’. See filename and extension
(1.6)

bg The bg command causes a suspended job to continue execution in the background
(2.6).

-35-

bin A directory containing binaries of programs and shell scripts to be executed is
typically called a bin directory. The standard system bin directories are ‘/bin’
containing the most heavily used commands and ‘/usr/bin’ which contains most
other user programs. Programs developed at UC Berkeley live in ‘/usr/ucb’,
while locally written programs live in ‘/usr/local’. Games are kept in the direc-
tory ‘/usr/games’. You can place binaries in any directory. If you wish to exe-
cute them often, the name of the directories should be a component of the vari-
able path.

break Break is a builtin command used to exit from loops within the control structure
of the shell (3.7).

breaksw The breaksw builtin command is used to exit from a switch control structure, like
a break exits from loops (3.7).

builtin A command executed directly by the shell is called a builtin command. Most
commands in UNIX are not built into the shell, but rather exist as files in bin
directories. These commands are accessible because the directories in which they
reside are named in the path variable.

case A case command is used as a label in a switch statement in the shell’s control
structure, similar to that of the language C. Details are given in the shell docu-
mentation ‘csh(1)’ (3.7).

cat The cat program catenates a list of specified files on the standard output. It is
usually used to look at the contents of a single file on the terminal, to ‘cat a file’
(1.8, 2.3).

cd The cd command is used to change the working directory. With no arguments,
cd changes your working directory to be your home directory (2.4, 2.7).

chdir The chdir command is a synonym for cd. Cd is usually used because it is easier
to type.

chsh The chsh command is used to change the shell which you use on UNIX. By
default, you use an different version of the shell which resides in ‘/bin/sh’. You
can change your shell to ‘/bin/csh’ by doing

chsh your-login-name /bin/csh

Thus I would do

chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to UNIX after doing
this command, you will be using csh rather than the shell in ‘/bin/sh’ (1.9).

cmp Cmp is a program which compares files. It is usually used on binary files, or to
see if two files are identical (3.6). For comparing text files the program diff,
described in ‘diff (1)’ is used.

command A function performed by the system, either by the shell (a builtin command) or
by a program residing in a file in a directory within the UNIX system, is called a
command (1.1).

command name
When a command is issued, it consists of a command name, which is the first
word of the command, followed by arguments. The convention on UNIX is that
the first word of a command names the function to be performed (1.1).

command substitution
The replacement of a command enclosed in ‘`’ characters by the text output by
that command is called command substitution (4.3).

component A part of a pathname between ‘/’ characters is called a component of that path-
name. A variable which has multiple strings as value is said to have several

-36-

components; each string is a component of the variable.

continue A builtin command which causes execution of the enclosing foreach or while loop
to cycle prematurely. Similar to the continue command in the programming lan-
guage C (3.6).

control- Certain special characters, called control characters, are produced by holding
down the CONTROL key on your terminal and simultaneously pressing another
character, much like the SHIFT key is used to produce upper case characters.
Thus control-c is produced by holding down the CONTROL key while pressing the
‘c’ key. Usually UNIX prints an up-arrow (↑) followed by the corresponding letter
when you type a control character (e.g. ‘↑C’ for control-c (1.8).

core dump When a program terminates abnormally, the system places an image of its cur-
rent state in a file named ‘core’. This core dump can be examined with the sys-
tem debugger ‘adb(1)’ or ‘sdb(1)’ in order to determine what went wrong with
the program (1.8). If the shell produces a message of the form

Illegal instruction (core dumped)

(where ‘Illegal instruction’ is only one of several possible messages), you should
report this to the author of the program or a system administrator, saving the
‘core’ file.

cp The cp (copy) program is used to copy the contents of one file into another file.
It is one of the most commonly used UNIX commands (1.6).

csh The name of the shell program that this document describes.

.cshrc The file .cshrc in your home directory is read by each shell as it begins execution.
It is usually used to change the setting of the variable path and to set alias
parameters which are to take effect globally (2.1).

cwd The cwd variable in the shell holds the absolute pathname of the current working
directory. It is changed by the shell whenever your current working directory
changes and should not be changed otherwise (2.2).

date The date command prints the current date and time (1.3).

debugging Debugging is the process of correcting mistakes in programs and shell scripts.
The shell has several options and variables which may be used to aid in shell
debugging (4.4).

default: The label default: is used within shell switch statements, as it is in the C lan-
guage to label the code to be executed if none of the case labels matches the
value switched on (3.7).

DELETE The DELETE or RUBOUT key on the terminal normally causes an interrupt to be
sent to the current job. Many users change the interrupt character to be ↑C.

detached A command that continues running in the background after you logout is said to
be detached.

diagnostic An error message produced by a program is often referred to as a diagnostic.
Most error messages are not written to the standard output, since that is often
directed away from the terminal (1.3, 1.5). Error messsages are instead written
to the diagnostic output which may be directed away from the terminal, but usu-
ally is not. Thus diagnostics will usually appear on the terminal (2.5).

directory A structure which contains files. At any time you are in one particular directory
whose names can be printed by the command pwd. The chdir command will
change you to another directory, and make the files in that directory visible. The
directory in which you are when you first login is your home directory (1.1, 2.7).

directory stack The shell saves the names of previous working directories in the directory stack
when you change your current working directory via the pushd command. The

-37-

directory stack can be printed by using the dirs command, which includes your
current working directory as the first directory name on the left (2.7).

dirs The dirs command prints the shell’s directory stack (2.7).

du The du command is a program (described in ‘du(1)’) which prints the number of
disk blocks is all directories below and including your current working directory
(2.6).

echo The echo command prints its arguments (1.6, 3.6).

else The else command is part of the ‘if-then-else-endif’ control command construct
(3.6).

endif If an if statement is ended with the word then, all lines following the if up to a
line starting with the word endif or else are executed if the condition between
parentheses after the if is true (3.6).

EOF An end-of-file is generated by the terminal by a control-d, and whenever a com-
mand reads to the end of a file which it has been given as input. Commands
receiving input from a pipe receive an end-of-file when the command sending
them input completes. Most commands terminate when they receive an end-of-
file. The shell has an option to ignore end-of-file from a terminal input which
may help you keep from logging out accidentally by typing too many control-d’s
(1.1, 1.8, 3.8).

escape A character ‘\’ used to prevent the special meaning of a metacharacter is said to
escape the character from its special meaning. Thus

echo *

will echo the character ‘*’ while just

echo *

will echo the names of the file in the current directory. In this example, \
escapes ‘*’ (1.7). There is also a non-printing character called escape, usually
labelled ESC or ALTMODE on terminal keyboards. Some older UNIX systems use
this character to indicate that output is to be suspended. Most systems use con-
trol-s to stop the output and control-q to start it.

/etc/passwd This file contains information about the accounts currently on the system. It
consists of a line for each account with fields separated by ‘:’ characters (1.8).
You can look at this file by saying

cat /etc/passwd

The commands finger and grep are often used to search for information in this
file. See ‘finger(1)’, ‘passwd(5)’, and ‘grep(1)’ for more details.

exit The exit command is used to force termination of a shell script, and is built into
the shell (3.9).

exit status A command which discovers a problem may reflect this back to the command
(such as a shell) which invoked (executed) it. It does this by returning a non-
zero number as its exit status, a status of zero being considered ‘normal termina-
tion’. The exit command can be used to force a shell command script to give a
non-zero exit status (3.6).

expansion The replacement of strings in the shell input which contain metacharacters by
other strings is referred to as the process of expansion. Thus the replacement of
the word ‘*’ by a sorted list of files in the current directory is a ‘filename expan-
sion’. Similarly the replacement of the characters ‘!!’ by the text of the last com-
mand is a ‘history expansion’. Expansions are also referred to as substitutions
(1.6, 3.4, 4.2).

-38-

expressions Expressions are used in the shell to control the conditional structures used in the
writing of shell scripts and in calculating values for these scripts. The operators
available in shell expressions are those of the language C (3.5).

extension Filenames often consist of a base name and an extension separated by the charac-
ter ‘.’. By convention, groups of related files often share the same root name.
Thus if ‘prog.c’ were a C program, then the object file for this program would be
stored in ‘prog.o’. Similarly a paper written with the ‘−me’ nroff macro package
might be stored in ‘paper.me’ while a formatted version of this paper might be
kept in ‘paper.out’ and a list of spelling errors in ‘paper.errs’ (1.6).

fg The job control command fg is used to run a background or suspended job in the
foreground (1.8, 2.6).

filename Each file in UNIX has a name consisting of up to 14 characters and not including
the character ‘/’ which is used in pathname building. Most filenames do not
begin with the character ‘.’, and contain only letters and digits with perhaps a ‘.’
separating the base portion of the filename from an extension (1.6).

filename expansion
Filename expansion uses the metacharacters ‘*’, ‘?’ and ‘[’ and ‘]’ to provide a
convenient mechanism for naming files. Using filename expansion it is easy to
name all the files in the current directory, or all files which have a common root
name. Other filename expansion mechanisms use the metacharacter ‘˜’ and allow
files in other users’ directories to be named easily (1.6, 4.2).

flag Many UNIX commands accept arguments which are not the names of files or
other users but are used to modify the action of the commands. These are
referred to as flag options, and by convention consist of one or more letters pre-
ceded by the character ‘−’ (1.2). Thus the ls (list files) command has an option
‘−s’ to list the sizes of files. This is specified

ls −s

foreach The foreach command is used in shell scripts and at the terminal to specify repe-
tition of a sequence of commands while the value of a certain shell variable
ranges through a specified list (3.6, 4.1).

foreground When commands are executing in the normal way such that the shell is waiting
for them to finish before prompting for another command they are said to be
foreground jobs or running in the foreground. This is as opposed to background.
Foreground jobs can be stopped by signals from the terminal caused by typing
different control characters at the keyboard (1.8, 2.6).

goto The shell has a command goto used in shell scripts to transfer control to a given
label (3.7).

grep The grep command searches through a list of argument files for a specified string.
Thus

grep bill /etc/passwd

will print each line in the file /etc/passwd which contains the string ‘bill’. Actu-
ally, grep scans for regular expressions in the sense of the editors ‘ed(1)’ and
‘ex(1)’. Grep stands for ‘globally find regular expression and print’ (2.4).

head The head command prints the first few lines of one or more files. If you have a
bunch of files containing text which you are wondering about it is sometimes use-
ful to run head with these files as arguments. This will usually show enough of
what is in these files to let you decide which you are interested in (1.5).
Head is also used to describe the part of a pathname before and including the last
‘/’ character. The tail of a pathname is the part after the last ‘/’. The ‘:h’ and
‘:t’ modifiers allow the head or tail of a pathname stored in a shell variable to be

-39-

used (3.6).

history The history mechanism of the shell allows previous commands to be repeated,
possibly after modification to correct typing mistakes or to change the meaning
of the command. The shell has a history list where these commands are kept,
and a history variable which controls how large this list is (2.3).

home directory
Each user has a home directory, which is given in your entry in the password file,
/etc/passwd. This is the directory which you are placed in when you first login.
The cd or chdir command with no arguments takes you back to this directory,
whose name is recorded in the shell variable home. You can also access the home
directories of other users in forming filenames using a filename expansion nota-
tion and the character ‘˜’ (1.6).

if A conditional command within the shell, the if command is used in shell com-
mand scripts to make decisions about what course of action to take next (3.6).

ignoreeof Normally, your shell will exit, printing ‘logout’ if you type a control-d at a
prompt of ‘% ’. This is the way you usually log off the system. You can set the
ignoreeof variable if you wish in your .login file and then use the command logout
to logout. This is useful if you sometimes accidentally type too many control-d
characters, logging yourself off (2.2).

input Many commands on UNIX take information from the terminal or from files which
they then act on. This information is called input. Commands normally read for
input from their standard input which is, by default, the terminal. This standard
input can be redirected from a file using a shell metanotation with the character
‘<’. Many commands will also read from a file specified as argument. Com-
mands placed in pipelines will read from the output of the previous command in
the pipeline. The leftmost command in a pipeline reads from the terminal if you
neither redirect its input nor give it a filename to use as standard input. Special
mechanisms exist for supplying input to commands in shell scripts (1.5, 3.8).

interrupt An interrupt is a signal to a program that is generated by hitting the RUBOUT or
DELETE key (although users can and often do change the interrupt character,
usually to ↑C). It causes most programs to stop execution. Certain programs,
such as the shell and the editors, handle an interrupt in special ways, usually by
stopping what they are doing and prompting for another command. While the
shell is executing another command and waiting for it to finish, the shell does
not listen to interrupts. The shell often wakes up when you hit interrupt because
many commands die when they receive an interrupt (1.8, 3.9).

job One or more commands typed on the same input line separated by ‘|’ or ‘;’ char-
acters are run together and are called a job. Simple commands run by them-
selves without any ‘|’ or ‘;’ characters are the simplest jobs. Jobs are classified as
foreground, background, or suspended (2.6).

job control The builtin functions that control the execution of jobs are called job control
commands. These are bg, fg, stop, kill (2.6).

job number When each job is started it is assigned a small number called a job number which
is printed next to the job in the output of the jobs command. This number, pre-
ceded by a ‘%’ character, can be used as an argument to job control commands
to indicate a specific job (2.6).

jobs The jobs command prints a table showing jobs that are either running in the
background or are suspended (2.6).

kill A command which sends a signal to a job causing it to terminate (2.6).

.login The file .login in your home directory is read by the shell each time you login to
UNIX and the commands there are executed. There are a number of commands

-40-

which are usefully placed here, especially set commands to the shell itself (2.1).

login shell The shell that is started on your terminal when you login is called your login
shell. It is different from other shells which you may run (e.g. on shell scripts) in
that it reads the .login file before reading commands from the terminal and it
reads the .logout file after you logout (2.1).

logout The logout command causes a login shell to exit. Normally, a login shell will exit
when you hit control-d generating an end-of-file, but if you have set ignoreeof in
you .login file then this will not work and you must use logout to log off the UNIX

system (2.8).

.logout When you log off of UNIX the shell will execute commands from the file .logout in
your home directory after it prints ‘logout’.

lpr The command lpr is the line printer daemon. The standard input of lpr spooled
and printed on the UNIX line printer. You can also give lpr a list of filenames as
arguments to be printed. It is most common to use lpr as the last component of
a pipeline (2.3).

ls The ls (list files) command is one of the most commonly used UNIX commands.
With no argument filenames it prints the names of the files in the current direc-
tory. It has a number of useful flag arguments, and can also be given the names
of directories as arguments, in which case it lists the names of the files in these
directories (1.2).

mail The mail program is used to send and receive messages from other UNIX users
(1.1, 2.1).

make The make command is used to maintain one or more related files and to organize
functions to be performed on these files. In many ways make is easier to use,
and more helpful than shell command scripts (3.2).

makefile The file containing commands for make is called makefile (3.2).

manual The manual often referred to is the ‘UNIX programmer’s manual’. It contains a
number of sections and a description of each UNIX program. An online version of
the manual is accessible through the man command. Its documentation can be
obtained online via

man man

metacharacter
Many characters which are neither letters nor digits have special meaning either
to the shell or to UNIX. These characters are called metacharacters. If it is nec-
essary to place these characters in arguments to commands without them having
their special meaning then they must be quoted. An example of a metacharacter
is the character ‘>’ which is used to indicate placement of output into a file. For
the purposes of the history mechanism, most unquoted metacharacters form sepa-
rate words (1.4). The appendix to this user’s manual lists the metacharacters in
groups by their function.

mkdir The mkdir command is used to create a new directory.

modifier Substitutions with the history mechanism, keyed by the character ‘!’ or of vari-
ables using the metacharacter ‘$’, are often subjected to modifications, indicated
by placing the character ‘:’ after the substitution and following this with the
modifier itself. The command substitution mechanism can also be used to per-
form modification in a similar way, but this notation is less clear (3.6).

more The program more writes a file on your terminal allowing you to control how
much text is displayed at a time. More can move through the file screenful by
screenful, line by line, search forward for a string, or start again at the beginning
of the file. It is generally the easiest way of viewing a file (1.8).

-41-

noclobber The shell has a variable noclobber which may be set in the file .login to prevent
accidental destruction of files by the ‘>’ output redirection metasyntax of the
shell (2.2, 2.5).

noglob The shell variable noglob is set to suppress the filename expansion of arguments
containing the metacharacters ‘˜’, ‘*’, ‘?’, ‘[’ and ‘]’ (3.6).

notify The notify command tells the shell to report on the termination of a specific
background job at the exact time it occurs as opposed to waiting until just before
the next prompt to report the termination. The notify variable, if set, causes the
shell to always report the termination of background jobs exactly when they
occur (2.6).

onintr The onintr command is built into the shell and is used to control the action of a
shell command script when an interrupt signal is received (3.9).

output Many commands in UNIX result in some lines of text which are called their out-
put. This output is usually placed on what is known as the standard output
which is normally connected to the user’s terminal. The shell has a syntax using
the metacharacter ‘>’ for redirecting the standard output of a command to a file
(1.3). Using the pipe mechanism and the metacharacter ‘|’ it is also possible for
the standard output of one command to become the standard input of another
command (1.5). Certain commands such as the line printer daemon p do not
place their results on the standard output but rather in more useful places such
as on the line printer (2.3). Similarly the write command places its output on
another user’s terminal rather than its standard output (2.3). Commands also
have a diagnostic output where they write their error messages. Normally these
go to the terminal even if the standard output has been sent to a file or another
command, but it is possible to direct error diagnostics along with standard out-
put using a special metanotation (2.5).

pushd The pushd command, which means ‘push directory’, changes the shell’s working
directory and also remembers the current working directory before the change is
made, allowing you to return to the same directory via the popd command later
without retyping its name (2.7).

path The shell has a variable path which gives the names of the directories in which it
searches for the commands which it is given. It always checks first to see if the
command it is given is built into the shell. If it is, then it need not search for
the command as it can do it internally. If the command is not builtin, then the
shell searches for a file with the name given in each of the directories in the path
variable, left to right. Since the normal definition of the path variable is

path (. /usr/ucb /bin /usr/bin)

the shell normally looks in the current directory, and then in the standard sys-
tem directories ‘/usr/ucb’, ‘/bin’ and ‘/usr/bin’ for the named command (2.2).
If the command cannot be found the shell will print an error diagnostic. Scripts
of shell commands will be executed using another shell to interpret them if they
have ‘execute’ permission set. This is normally true because a command of the
form

chmod 755 script

was executed to turn this execute permission on (3.3). If you add new com-
mands to a directory in the path, you should issue the command rehash (2.2).

pathname A list of names, separated by ‘/’ characters, forms a pathname. Each component,
between successive ‘/’ characters, names a directory in which the next component
file resides. Pathnames which begin with the character ‘/’ are interpreted rela-
tive to the root directory in the filesystem. Other pathnames are interpreted

-42-

relative to the current directory as reported by pwd. The last component of a
pathname may name a directory, but usually names a file.

pipeline A group of commands which are connected together, the standard output of each
connected to the standard input of the next, is called a pipeline. The pipe mech-
anism used to connect these commands is indicated by the shell metacharacter ‘|’
(1.5, 2.3).

popd The popd command changes the shell’s working directory to the directory you
most recently left using the pushd command. It returns to the directory without
having to type its name, forgetting the name of the current working directory
before doing so (2.7).

port The part of a computer system to which each terminal is connected is called a
port. Usually the system has a fixed number of ports, some of which are con-
nected to telephone lines for dial-up access, and some of which are permanently
wired directly to specific terminals.

pr The pr command is used to prepare listings of the contents of files with headers
giving the name of the file and the date and time at which the file was last modi-
fied (2.3).

printenv The printenv command is used to print the current setting of variables in the
environment (2.8).

process An instance of a running program is called a process (2.6). UNIX assigns each
process a unique number when it is started − called the process number. Process
numbers can be used to stop individual processes using the kill or stop commands
when the processes are part of a detached background job.

program Usually synonymous with command; a binary file or shell command script which
performs a useful function is often called a program.

programmer’s manual
Also referred to as the manual. See the glossary entry for ‘manual’.

prompt Many programs will print a prompt on the terminal when they expect input.
Thus the editor ‘ex(1)’ will print a ‘:’ when it expects input. The shell prompts
for input with ‘% ’ and occasionally with ‘? ’ when reading commands from the
terminal (1.1). The shell has a variable prompt which may be set to a different
value to change the shell’s main prompt. This is mostly used when debugging
the shell (2.8).

ps The ps command is used to show the processes you are currently running. Each
process is shown with its unique process number, an indication of the terminal
name it is attached to, an indication of the state of the process (whether it is
running, stopped, awaiting some event (sleeping), and whether it is swapped
out), and the amount of CPU time it has used so far. The command is identified
by printing some of the words used when it was invoked (2.6). Shells, such as
the csh you use to run the ps command, are not normally shown in the output.

pwd The pwd command prints the full pathname of the current working directory.
The dirs builtin command is usually a better and faster choice.

quit The quit signal, generated by a control-\, is used to terminate programs which
are behaving unreasonably. It normally produces a core image file (1.8).

quotation The process by which metacharacters are prevented their special meaning, usu-
ally by using the character ‘´ in pairs, or by using the character ‘\’, is referred to
as quotation (1.7).

redirection The routing of input or output from or to a file is known as redirection of input
or output (1.3).

-43-

rehash The rehash command tells the shell to rebuild its internal table of which com-
mands are found in which directories in your path. This is necessary when a new
program is installed in one of these directories (2.8).

relative pathname
A pathname which does not begin with a ‘/’ is called a relative pathname since it
is interpreted relative to the current working directory. The first component of
such a pathname refers to some file or directory in the working directory, and
subsequent components between ‘/’ characters refer to directories below the
working directory. Pathnames that are not relative are called absolute pathnames
(1.6).

repeat The repeat command iterates another command a specified number of times.

root The directory that is at the top of the entire directory structure is called the root
directory since it is the ‘root’ of the entire tree structure of directories. The
name used in pathnames to indicate the root is ‘/’. Pathnames starting with ‘/’
are said to be absolute since they start at the root directory. Root is also used as
the part of a pathname that is left after removing the extension. See filename for
a further explanation (1.6).

RUBOUT The RUBOUT or DELETE key sends an interrupt to the current job. Most interac-
tive commands return to their command level upon receipt of an interrupt, while
non-interactive commands usually terminate, returning control to the shell.
Users often change interrupt to be generated by ↑C rather than DELETE by using
the stty command.

scratch file Files whose names begin with a ‘#’ are referred to as scratch files, since they are
automatically removed by the system after a couple of days of non-use, or more
frequently if disk space becomes tight (1.3).

script Sequences of shell commands placed in a file are called shell command scripts. It
is often possible to perform simple tasks using these scripts without writing a
program in a language such as C, by using the shell to selectively run other pro-
grams (3.3, 3.10).

set The builtin set command is used to assign new values to shell variables and to
show the values of the current variables. Many shell variables have special mean-
ing to the shell itself. Thus by using the set command the behavior of the shell
can be affected (2.1).

setenv Variables in the environment ‘environ(5)’ can be changed by using the setenv
builtin command (2.8). The printenv command can be used to print the value of
the variables in the environment.

shell A shell is a command language interpreter. It is possible to write and run your
own shell, as shells are no different than any other programs as far as the system
is concerned. This manual deals with the details of one particular shell, called
csh.

shell script See script (3.3, 3.10).

signal A signal in UNIX is a short message that is sent to a running program which
causes something to happen to that process. Signals are sent either by typing
special control characters on the keyboard or by using the kill or stop commands
(1.8, 2.6).

sort The sort program sorts a sequence of lines in ways that can be controlled by
argument flags (1.5).

source The source command causes the shell to read commands from a specified file. It
is most useful for reading files such as .cshrc after changing them (2.8).

-44-

special character
See metacharacters and the appendix to this manual.

standard We refer often to the standard input and standard output of commands. See
input and output (1.3, 3.8).

status A command normally returns a status when it finishes. By convention a status of
zero indicates that the command succeeded. Commands may return non-zero
status to indicate that some abnormal event has occurred. The shell variable
status is set to the status returned by the last command. It is most useful in
shell commmand scripts (3.6).

stop The stop command causes a background job to become suspended (2.6).

string A sequential group of characters taken together is called a string. Strings can
contain any printable characters (2.2).

stty The stty program changes certain parameters inside UNIX which determine how
your terminal is handled. See ‘stty(1)’ for a complete description (2.6).

substitution The shell implements a number of substitutions where sequences indicated by
metacharacters are replaced by other sequences. Notable examples of this are
history substitution keyed by the metacharacter ‘!’ and variable substitution indi-
cated by ‘$’. We also refer to substitutions as expansions (3.4).

suspended A job becomes suspended after a STOP signal is sent to it, either by typing a con-
trol-z at the terminal (for foreground jobs) or by using the stop command (for
background jobs). When suspended, a job temporarily stops running until it is
restarted by either the fg or bg command (2.6).

switch The switch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the switch
statement in the language C (3.7).

termination When a command which is being executed finishes we say it undergoes termina-
tion or terminates. Commands normally terminate when they read an end-of-file
from their standard input. It is also possible to terminate commands by sending
them an interrupt or quit signal (1.8). The kill program terminates specified jobs
(2.6).

then The then command is part of the shell’s ‘if-then-else-endif’ control construct used
in command scripts (3.6).

time The time command can be used to measure the amount of CPU and real time
consumed by a specified command as well as the amount of disk i/o, memory uti-
lized, and number of page faults and swaps taken by the command (2.1, 2.8).

tset The tset program is used to set standard erase and kill characters and to tell the
system what kind of terminal you are using. It is often invoked in a .login file
(2.1).

tty The word tty is a historical abbreviation for ‘teletype’ which is frequently used in
UNIX to indicate the port to which a given terminal is connected. The tty com-
mand will print the name of the tty or port to which your terminal is presently
connected.

unalias The unalias command removes aliases (2.8).

UNIX UNIX is an operating system on which csh runs. UNIX provides facilities which
allow csh to invoke other programs such as editors and text formatters which you
may wish to use.

unset The unset command removes the definitions of shell variables (2.2, 2.8).

variable expansion
See variables and expansion (2.2, 3.4).

-45-

variables Variables in csh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path, noclobber, and
ignoreeof for examples. Variables such as argv are also used in writing shell pro-
grams (shell command scripts) (2.2).

verbose The verbose shell variable can be set to cause commands to be echoed after they
are history expanded. This is often useful in debugging shell scripts. The ver-
bose variable is set by the shell’s −v command line option (3.10).

wc The wc program calculates the number of characters, words, and lines in the files
whose names are given as arguments (2.6).

while The while builtin control construct is used in shell command scripts (3.7).

word A sequence of characters which forms an argument to a command is called a
word. Many characters which are neither letters, digits, ‘−’, ‘.’ nor ‘/’ form
words all by themselves even if they are not surrounded by blanks. Any sequence
of characters may be made into a word by surrounding it with ‘´’ characters
except for the characters ‘´’ and ‘!’ which require special treatment (1.1). This
process of placing special characters in words without their special meaning is
called quoting.

working directory
At any given time you are in one particular directory, called your working
directory. This directory’s name is printed by the pwd command and the files
listed by ls are the ones in this directory. You can change working directories
using chdir.

write The write command is used to communicate with other users who are logged in
to UNIX.

