
Building 4.2BSD UNIX† Systems with Config

June, 1983

Samuel J. Leffler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document describes the use of config (8) to configure and create
bootable 4.2BSD system images. It discusses the structure of system configura-
tion files and how to configure systems with non-standard hardware configura-
tions. Sections describing the preferred way to add new code to the system and
how the system’s autoconfiguration process operates are included. An appendix
contains a summary of the rules used by the system in calculating the size of sys-
tem data structures, and also indicates some of the standard system size limita-
tions (and how to change them).

†UNIX is a Trademark of Bell Laboratories.

July 27, 1983

Building Systems With Config Introduction

1. INTRODUCTION

Config is a tool used in building 4.2BSD system images. It takes a file describing a system’s
tunable parameters and hardware support, and generates a collection of files which are then used
to build a copy of UNIX appropriate to that configuration. Config simplifies system maintenance
by isolating system dependencies in a single, easy to understand, file.

This document describes the content and format of system configuration files and the rules
which must be followed when creating these files. Example configuration files are constructed and
discussed.

Later sections suggest guidelines to be used in modifying system source and explain some of
the inner workings of the autoconfiguration process. Appendix D summarizes the rules used in
calculating the most important system data structures and indicates some inherent system data
structure size limitations (and how to go about modifying them).

July 27, 1983

Building Systems With Config Configuration File Contents

2. CONFIGURATION FILE CONTENTS

A system configuration must include at least the following pieces of information:

• machine type

• cpu type

• system identification

• timezone

• maximum number of users

• location of the root file system

• available hardware

Config allows multiple system images to be generated from a single configuration descrip-
tion. Each system image is configured for identical hardware, but may have different locations for
the root file system and, possibly, other system devices.

0.1. Machine type

The machine type indicates if the system is going to operate on a DEC VAX-11 computer,
or some other machine on which 4.2BSD operates. The machine type is used to locate certain
data files which are machine specific and, also, to select rules used in constructing the resultant
configuration files.

0.2. Cpu type

The cpu type indicates which, of possibly many, cpu’s the system is to operate on. For
example, if the system is being configured for a VAX-11, it could be running on a VAX-11/780,
VAX-11/750, or VAX-11/730. Specifying more than one cpu type implies the system should be
configured to run on all the cpu’s specified. For some types of machines this is not possible and
config will print a diagnostic indicating such.

0.3. System identification

The system identification is a moniker attached to the system, and often the machine on
which the system is to run. For example, at Berkeley we have machines named Ernie (Co-VAX),
Kim (No-VAX), and so on. The system identifier selected is used to create a global C ‘‘#define’’
which may be used to isolate system dependent pieces of code in the kernel. For example, Ernie’s
Varian driver used to be special cased because its interrupt vectors were wired together. The code
in the driver which understood how to handle this non-standard hardware configuration was con-
ditionally compiled in only if the system was for Ernie.

The system identifier ‘‘GENERIC’’ is given to a system which will run on any cpu of a par-
ticular machine type; it should not otherwise be used for a system identifier.

0.4. Timezone

The timezone in which the system is to run is used to define the information returned by the
gettimeofday (2) system call. This value is specified as the number of hours east or west of GMT.
Negative numbers indicate a value east of GMT. The timezone specification may also indicate the
type of daylight savings time rules to be applied.

0.5. Maximum number of users

The system allocates many system data structures at boot time based on the maximum
number of users the system will support. This number is normally between 8 and 40, depending
on the hardware and expected job mix. The rules used to calculate system data structures are
discussed in Appendix D.

July 27, 1983

Building Systems With Config - 3 - Configuration File Contents

0.6. Root file system location

When the system boots it must know the location of the root of the file system tree. This
location and the part(s) of the disk(s) to be used for paging and swapping must be specified in
order to create a complete configuration description. Config uses many rules to calculate default
locations for these items; these are described in Appendix B.

When a generic system is configured, the root file system is left undefined until the system is
booted. In this case, the root file system need not be specified, only that the system is a generic
system.

0.7. Hardware devices

When the system boots it goes through an autoconfiguration phase. During this period, the
system searches for all those hardware devices which the system builder has indicated might be
present. This probing sequence requires certain pieces of information such as register addresses,
bus interconnects, etc. A system’s hardware may be configured in a very flexible manner or be
specified without any flexibility whatsoever. Most people do not configure hardware devices into
the system unless they are currently present on the machine, expect them to be present in the
near future, or are simply guarding against a hardware failure somewhere else at the site (it is
often wise to configure in extra disks in case an emergency requires moving one off a machine
which has hardware problems).

The specification of hardware devices usually occupies the majority of the configuration file.
As such, a large portion of this document will be spent understanding it. Section 6.3 contains a
description of the autoconfiguration process, as it applies to those planning to write, or modify
existing, device drivers.

0.8. Optional items

Other than the mandatory pieces of information described above, it is also possible to
include various optional system facilities. For example, 4.2BSD can be configured to support
binary compatibility for programs built under 4.1BSD. Also, optional support is provided for disk
quotas and tracing the performance of the virtual memory subsystem. Any optional facilities to
be configured into the system are specified in the configuration file. The resultant files generated
by config will automatically include the necessary pieces of the system.

July 27, 1983

Building Systems With Config System Building Process

3. SYSTEM BUILDING PROCESS

In this section we consider the steps necessary to build a bootable system image. We
assume the system source is located in the ‘‘/sys’’ directory and that, initially, the system is being
configured from source code.

Under normal circumstances there are 5 steps in building a system.

1) Create a configuration file for the system.

2) Make a directory for the system to be constructed in.

3) Run config on the configuration file to generate the files required to compile and load the sys-
tem image.

4) Construct the source code interdependency rules for the configured system.

5) Compile and load the system with make(1).

Steps 1 and 2 are usually done only once. When a system configuration changes it usually
suffices to just run config on the modified configuration file, rebuild the source code dependencies,
and remake the system. Sometimes, however, configuration dependencies may not be noticed in
which case it is necessary to clean out the relocatable object files saved in the system’s directory;
this will be discussed later.

3.1. Creating a configuration file

Configuration files normally reside in the directory ‘‘/sys/conf’’. A configuration file is most
easily constructed by copying an existing configuration file and modifying it. The 4.2BSD distri-
bution contains a number of configuration files for machines at Berkeley, one may be suitable or,
in worst case, you may take the generic configuration file and edit that.

The configuration file must have the same name as the directory in which the configured sys-
tem is to be built. Further, config assumes this directory is located in the parent directory of the
directory in which it is run. For example, the generic system has a configuration file
‘‘/sys/conf/GENERIC’’ and an accompanying directory named ‘‘/sys/GENERIC’’. In general it is
unwise to move your configuration directories out of ‘‘/sys’’ as most of the system code and the
files created by config use pathnames of the form ‘‘../’’. If you are running out of space on the file
system where the configuration directories are located there is a mechanism for sharing relocatable
object files between systems; this is described later.

When building your configuration file, be sure to include the items described in section 2.
In particular, the machine type, cpu type, timezone, system identifier, maximum users, and root
device must be specified. The specification of the hardware present may take a bit of work; par-
ticularly if your hardware is configured at non-standard places (e.g. device registers located at
funny places or devices not supported by the system). Section 4 of this document gives a detailed
description of the configuration file syntax, section 5 explains some sample configuration files, and
section 6 discusses how to add new devices to the system. If the devices to be configured are not
already described in one of the existing configuration files you should check the manual pages in
section 4 of the UNIX Programmers Manual. For each supported device, the manual page synop-
sis entry gives a sample configuration line.

Once the configuration file is complete, run it through config and look for any errors. Never
try and use a system which config has complained about; the results are unpredictable. For the
most part, config’s error diagnostics are self explanatory. It may be the case that the line num-
bers given with the error messages are off by one.

A successful run of config on your configuration file will generate a number of files in the
configuration directory. These files are:

• A file to be used by make (1) in compiling and loading the system.

July 27, 1983

Building Systems With Config - 5 - System Building Process

• One file for each possible system image for your machine which describes where swapping, the
root file system, and other miscellaneous system devices are located.

• A collection of header files, one per possible device the system supports, which define the hard-
ware configured.

• A file containing the i/o configuration tables used by the system during its autoconfiguration
phase.

• An assembly language file of interrupt vectors which connect interrupts from your machine’s
external buses to the main system path for handling interrupts.

Unless you have reason to doubt config, or are curious how the system’s autoconfiguration
scheme works, you should never have to look at any of these files.

3.2. Constructing source code dependencies

When config is done generating the files needed to compile and link your system it will ter-
minate with a message of the form ‘‘Don’t forget to run make depend’’. This is a reminder that
you should change over to the configuration directory for the system just configured and type
‘‘make depend’’ to build the rules used by make to recognize interdependencies in the system
source code. This will insure that any changes to a piece of the system source code will result in
the proper modules being recompiled the next time make is run.

This step is particularly important if your site makes changes to the system include files.
The rules generated specify which source code files are dependent on which include files. Without
these rules, make will not recognize when it must rebuild modules due to a system header file
being modified. Note that dependency rules created by this step only reflect directly included
files. That is, if file ‘‘a’’ includes another file ‘‘b’’, which includes yet another, say ‘‘c’’, and then
‘‘c’’ is modified, make will not recognize that ‘‘a’’ should be recompiled. It is best to keep include
file dependencies only one level deep.

3.3. Building the system

The makefile constructed by config should allow a new system to be rebuilt by simply typing
‘‘make image-name’’. For example, if you have named your bootable system image ‘‘vmunix’’,
then ‘‘make vmunix’’ will generate a bootable image named ‘‘vmunix’’. Alternate system image
names are used when the root file system location and/or swapping configuration is done in more
than one way. The makefile which config creates has entry points for each system image defined
in the configuration file. Thus, if you have configured ‘‘vmunix’’ to be a system with the root file
system on an ‘‘hp’’ device and ‘‘hkvmunix’’ to be a system with the root file system on an ‘‘hk’’
device, then ‘‘make vmunix hkvmunix’’ will generate binary images for each.

Note that the name of a bootable image is different from the system identifier. All bootable
images are configured for the same system; only the information about the root file system and
paging devices differ. (This is described in more detail in section 4.)

The last step in the system building process is to rearrange certain commonly used symbols
in the symbol table of the system image; the makefile generated by config does this automatically
for you. This is advantageous for programs such as ps (1) and vmstat (1), which run much faster
when the symbols they need are located at the front of the symbol table. Remember also that
many programs expect the currently executing system to be named ‘‘/vmunix’’. If you install a
new system and name it something other than ‘‘/vmunix’’, many programs are likely to give
strange results.

3.4. Sharing object modules

If you have many systems which are all built on a single machine there are at least two
approaches to saving time in building system images. The best way is to have a single system
image which is run on all machines. This is attractive since it minimizes disk space used and time
required to rebuild systems after making changes. However, it is often the case that one or more
systems will require a separately configured system image. This may be due to limited memory

July 27, 1983

Building Systems With Config - 6 - System Building Process

(building a system with many unused device drivers can be expensive), or to configuration require-
ments (one machine may be a development machine where disk quotas are not needed, while
another is a production machine where they are), etc. In these cases it is possible for common
systems to share relocatable object modules which are not configuration dependent; most of the
module in the directory ‘‘/sys/sys’’ are of this sort.

To share object modules, a generic system should be built. Then, for each system configure
the system as before, but before recompiling and linking the system, type ‘‘make links’’. This will
cause the system to be searched for source modules which are safe to share between systems and
generate symbolic links in the current directory to the appropriate object modules in the directory
‘‘../GENERIC’’. A shell script, ‘‘makelinks’’ is generated with this request and may be checked for
correctness. The file ‘‘/sys/conf/defines’’ contains a list of symbols which we believe are safe to
ignore when checking the source code for modules which may be shared. Note that this list
includes the definitions used to conditionally compile in the virtual memory tracing facilities, and
the trace point support used only rarely (even at Berkeley). It may be necessary to modify this
file to reflect local needs. Note further, that as described previously, interdependencies which are
not directly visible in the source code are not caught. This means that if you place per-system
dependencies in an include file, they will not be recognized and the shared code may be selected in
an unexpected fashion.

3.5. Building profiled systems

It is simple to configure a system which will automatically collect profiling information as it
operates. The profiling data may be collected with kgmon (8) and processed with gprof (1) to
obtain information regarding the system’s operation. Profiled systems maintain histograms of the
program counter as well as the number of invocations of each routine. The gprof (1) command will
also generate a dynamic call graph of the executing system and propagate time spent in each rou-
tine along the arcs of the call graph (consult the gprof documentation for elaboration). The pro-
gram counter sampling can be driven by the system clock, or if you have an alternate real time
clock this can be used. The latter is highly recommended as use of the system clock will result in
statistical anomalies and time spent in the clock routine will not be accurately accounted for.

To configure a profiled system, the −−p option should be supplied to config. A profiled sys-
tem is about 5-10% larger in its text space due to the calls to count the subroutine invocations.
When the system executes, the profiling data is stored in a buffer which is 1.2 times the size of the
text space. The overhead for running a profiled system varies; under normal load we see anywhere
from 5-25% of the system time spent in the profiling code.

Note that systems configured for profiling should not be shared as described above unless all
the other shared systems are also to be profiled.

July 27, 1983

Building Systems With Config Configuration File Syntax

4. CONFIGURATION FILE SYNTAX

In this section we consider the specific rules used in writing a configuration file. A complete
grammar for the input language can be found in Appendix A and may be of use if you should
have problems with syntax errors.

A configuration file is broken up into three logical pieces:

• configuration parameters global to all system images specified in the configuration file,

• parameters specific to each system image to be generated, and

• device specifications.

4.1. Global configuration parameters

The global configuration parameters are the type of machine, cpu types, options, timezone,
system identifier, and maximum users. Each is specified with a separate line in the configuration
file.

machine type
The system is to run on the machine type specified. No more than one machine type can
appear in the configuration file. Legal values are vax and sun.

cpu ‘‘type’’
This system is to run on the cpu type specified. More than one cpu type specification can
appear in a configuration file. Legal types for a vax machine are VAX780,VAX750, and
VAX730.

options optionlist
Compile the listed optional code into the system. Options in this list are separated by com-
mas. Possible options are listed at the top of the generic makefile. A line of the form
‘‘options FUNNY,HAHA’’ generates global ‘‘#define’’s −DFUNNY −DHAHA in the resul-
tant makefile. An option may be given a value by following its name with ‘‘=’’, then the
value enclosed in (double) quotes. None of the standard options use such a value. The fol-
lowing options are currently in use: COMPAT (include code for compatiblity with 4.1BSD
binaries), INET (Internet communication protocols), PUP (support for a PUP raw inter-
face), and QUOTA (enable disk quotas). There are additional options which are associated
with certain peripheral devices; those are listed in the Synopsis section of the manual page
for the device.

timezone number [dst [number]]
Specifies the timezone you are in. This is measured in the number of hours your timezone is
west of GMT. EST is 5 hours west of GMT, PST is 8. Negative numbers indicate hours
east of GMT. If you specify dst, the system will operate under daylight savings time. An
optional integer or floating point number may be included to specify a particular daylight
saving time correction algorithm; the default value is 1, indicating the United States. Other
values are: 2 (Australian style), 3 (Western European), 4 (Middle European), and 5 (Eastern
European). See gettimeofday (2) and ctime (3) for more information.

ident name
This system is to be known as name. This is usually a cute name like ERNIE (short for
Ernie Co-Vax) or VAXWELL (for Vaxwell Smart).

maxusers number
The maximum expected number of simultaneously active user on this system is number.
This number is used to size several system data structures.

4.2. System image parameters

Multiple bootable images may be specified in a single configuration file. The systems will
have the same global configuration parameters and devices, but the location of the root file system

July 27, 1983

Building Systems With Config - 8 - Configuration File Syntax

and other system specific devices may be different. A system image is specified with a ‘‘config’’
line:

config sysname config-clauses

The sysname field is the name given to the loaded system image; almost everyone names their
standard system image ‘‘vmunix’’. The configuration clauses are one or more specifications indi-
cating where the root file system is located, how many paging devices there are and where they
go. The device used by the system to process argument lists during execve(2) calls may also be
specified, though in practice this is almost always selected by config using one of its rules for
selecting default locations for system devices.

A configuration clause is one of the following

root [on] root-device
swap [on] swap-device [and swap-device]
dumps [on] dump-device
args [on] arg-device

(the ‘‘on’’ is optional.) Multiple configuration clauses are separated by white space; config allows
specifications to be continued across multiple lines by beginning the continuation line with a tab
character. The ‘‘root’’ clause specifies where the root file system is located, the ‘‘swap’’ clause
indicates swapping and paging area(s), the ‘‘dumps’’ clause can be used to force system dumps to
be taken on a particular device, and the ‘‘args’’ clause can be used to specify that argument list
processing for execve should be done on a particular disk.

The device names supplied in the clauses may be fully specified as a device, unit, and file
system partition; or underspecified in which case config will use builtin rules to select default unit
numbers and file system partitions. The defaulting rules are a bit complicated as they are depen-
dent on the overall system configuration. For example, the swap area need not be specified at all
if the root device is specified; in this case the swap area is placed in the ‘‘b’’ partition of the same
disk where the root file system is located. Appendix B contains a complete list of the defaulting
rules used in selecting system configuration devices.

The device names are translated to the appropriate major and minor device numbers on a
per-machine basis. A file, ‘‘/sys/conf/devices.machine’’ (where ‘‘machine’’ is the machine type
specified in the configuration file), is used to map a device name to its major block device number.
The minor device number is calculated using the standard disk partitioning rules: on unit 0, parti-
tion ‘‘a’’ is minor device 0, partition ‘‘b’’ is minor device 1, and so on; for units other than 0, add 8
times the unit number to get the minor device.

If the default mapping of device name to major/minor device number is incorrect for your
configuration, it can be replaced by an explicit specification of the major/minor device. This is
done by substituting

major x minor y

where the device name would normally be found. For example,

config vmunix root on major 99 minor 1

Normally, the areas configured for swap space are sized by the system at boot time. If a
non-standard partition size is to be used for one or more swap areas, this can also be specified.
To do this, the device name specified for a swap area should have a ‘‘size’’ specification appended.
For example,

config vmunix root on hp0 swap on hp0b size 1200

would force swapping to be done in partition ‘‘b’’ of ‘‘hp0’’ and the swap partition size would be
set to 1200 sectors. A swap area sized larger than the associated disk partition is trimmed to the
partition size.

To create a generic configuration, only the clause ‘‘swap generic’’ should be specified; any
extra clauses will cause an error.

July 27, 1983

Building Systems With Config - 9 - Configuration File Syntax

4.3. Device specifications

Each device attached to a machine must be specified to config so that the system generated
will know to probe for it during the autoconfiguration process carried out at boot time. Hardware
specified in the configuration need not actually be present on the machine where the generated
system is to be run. Only the hardware actually found at boot time will be used by the system.

The specification of hardware devices in the configuration file parallels the interconnection
hierarchy of the machine to be configured. On the VAX, this means a configuration file must indi-
cate what MASSBUS and UNIBUS adapters are present, and to which nexi they might be con-
nected*. Similarly, devices and controllers must be indicated as possibly being connected to one
or more adapters. A device description may provide a complete definition of the possible configu-
ration parameters or it may leave certain parameters undefined and make the system probe for all
the possible values. The latter allows a single device configuration list to match many possible
physical configurations. For example, a disk may be indicated as present at UNIBUS adapter 0,
or at any UNIBUS adapter which the system locates at boot time. The latter scheme, termed
wildcarding, allows more flexibility in the physical configuration of a system; if a disk must be
moved around for some reason, the system will still locate it at the alternate location.

A device specification takes one of the following forms:

master device-name device-info
controller device-name device-info [interrupt-spec]
device device-name device-info interrupt-spec
disk device-name device-info
tape device-name device-info

A ‘‘master’’ is a MASSBUS tape controller; a ‘‘controller’’ is a disk controller, a UNIBUS tape con-
troller, a MASSBUS adapter, or a UNIBUS adapter. A ‘‘device’’ is an autonomous device which
connects directly to a UNIBUS adapter (as opposed to something like a disk which connects
through a disk controller). ‘‘Disk’’ and ‘‘tape’’ identify disk drives and tape drives connected to a
‘‘controller’’ or ‘‘master’’.

The device-name is one of the standard device names, as indicated in section 4 of the UNIX
Programmers Manual, concatenated with the logical unit number to be assigned the device (the
logical unit number may be different than the physical unit number indicated on the front of some-
thing like a disk; the logical unit number is used to refer to the UNIX device, not the physical unit
number). For example, ‘‘hp0’’ is logical unit 0 of a MASSBUS storage device, even though it
might be physical unit 3 on MASSBUS adapter 1.

The device-info clause specifies how the hardware is connected in the interconnection hierar-
chy. On the VAX, UNIBUS and MASSBUS adapters are connected to the internal system bus
through a nexus. Thus, one of the following specifications would be used:

controller mba0 at nexus x
controller uba0 at nexus x

To tie a controller to a specific nexus, ‘‘x’’ would be supplied as the number of that nexus; other-
wise ‘‘x’’ may be specified as ‘‘?’’, in which case the system will probe all nexi present looking for
the specified controller.

The remaining interconnections on the VAX are:

• a controller may be connected to another controller (e.g. a disk controller attached to a
UNIBUS adapter),

• a master is always attached to a controller (a MASSBUS adaptor),

• a tape is always attached to a master (for MASSBUS tape drives),

• a disk is always attached to a controller, and

* While VAX-11/750’s and VAX-11/730 do not actually have nexi, the system treats them as having

simulated nexi to simplify device configuration.

July 27, 1983

Building Systems With Config - 10 - Configuration File Syntax

• devices are always attached to controllers (e.g. UNIBUS controllers attached to UNIBUS
adapters).

The following lines give an example of each of these interconnections:

controller hk0 at uba0 ...
master ht0 at mba0 ...
tape tu0 at ht0 ...
disk rk1 at hk0 ...
device dz0 at uba0 ...

Any piece of hardware which may be connected to a specific controller may also be wildcarded
across multiple controllers.

The final piece of information needed by the system to configure devices is some indication
of where or how a device will interrupt. For tapes and disks, simply specifying the slave or drive
number is sufficient to locate the control status register for the device. For controllers, the control
status register must be given explicitly, as well how many interrupt vectors are used and the
names of the routines to which they should be bound. Thus the example lines given above might
be completed as:

controller hk0 at uba0 csr 0177440 vector rkintr
master ht0 at mba0 drive 0
tape tu0 at ht0 slave 0
disk rk1 at hk0 drive 1
device dz0 at uba0 csr 0160100 vector dzrint dzxint

Certain device drivers require extra information passed to them at boot time to tailor their
operation to the actual hardware present. The line printer driver, for example, needs to know how
many columns are present on each non-standard line printer (i.e. a line printer with other than 80
columns). The drivers for the terminal multiplexors need to know which lines are attached to
modem lines so that no one will be allowed to use them unless a connection is present. For this
reason, one last parameter may be specified to a device, a flags field. It has the syntax

flags number

and is usually placed after the csr specification. The number is passed directly to the associated
driver. The manual pages in section 4 should be consulted to determine how each driver uses this
value (if at all). Communications interface drivers commonly use the flags to indicate whether
modem control signals are in use.

The exact syntax for each specific device is given in the Synopsis section of its manual page
in section 4 of the manual.

4.4. Pseudo-devices

A number of drivers and software subsystems are treated like device drivers without any
associated hardware. To include any of these pieces, a ‘‘pseudo-device’’ specification must be used.
A specification for a pseudo device takes the form

pseudo-device device-name [howmany]

Examples of pseudo devices are bk, the Berknet line discipline, pty, the pseudo terminal
driver (where the optional howmany value indicates the number of pseudo terminals to configure,
32 default), and inet, the DARPA Internet protocols (one must also specify INET in the
‘‘options’’). Other pseudo devices for the network include loop, the software loopback interface,
imp (required when a CSS or ACC imp is configured), and ether (used by the Address Resolu-
tion Protocol on 10 Mb/sec ethernets). More information on configuring each of these can also be
found in section 4 of the manual.

July 27, 1983

Building Systems With Config Sample Configuration Files

5. SAMPLE CONFIGURATION FILES

In this section we will consider how to configure a sample VAX-11/780 system on which the
hardware can be reconfigured to guard against various hardware mishaps. We then study the
rules needed to configure a VAX-11/750 to run in a networking environment.

5.1. VAX-11/780 System

Our VAX-11/780 is configured with hardware recommended in the document ‘‘Hints on Con-
figuring a VAX for 4.2BSD’’ (this is one of the high-end configurations). Table 1 lists the perti-
nent hardware to be configured.

Item Vendor Connection Name Reference

cpu DEC VAX780
MASSBUS controller Emulex nexus ? mba0 hp(4)
disk Fujitsu mba0 hp0
disk Fujitsu mba0 hp1
MASSBUS controller Emulex nexus ? mba1
disk Fujitsu mba1 hp2
disk Fujitsu mba1 hp3
UNIBUS adapter DEC nexus ?
tape controller Emulex uba0 tm0 tm(4)
tape drive Kennedy tm0 te0
tape drive Kennedy tm0 te1
terminal multiplexor Emulex uba0 dh0 dh(4)
terminal multiplexor Emulex uba0 dh1
terminal multiplexor Emulex uba0 dh2

Table 1. VAX-11/780 Hardware support.

We will call this machine ANSEL and construct a configuration file one step at a time.

The first step is to fill in the global configuration parameters. The machine is a VAX, so the
machine type is ‘‘vax’’. We will assume this system will run only on this one processor, so the cpu
type is ‘‘VAX780’’. The options are empty since this is going to be a ‘‘vanilla’’ VAX. The system
identifier, as mentioned before, is ‘‘ANSEL’’ and the maximum number of users we plan to sup-
port is about 40. Thus the beginning of the configuration file looks like this:

#
ANSEL VAX (a picture perfect machine)
#
machine vax
cpu VAX780
timezone 8 dst
ident ANSEL
maxusers 40

To this we must then add the specifications for three system images. The first will be our
standard system with the root on ‘‘hp0’’ and swapping on the same drive as the root. The second
will have the root file system in the same location, but swap space interleaved among drives on
each controller. Finally, the third will be a generic system, to allow us to boot off any of the four
disk drives.

July 27, 1983

Building Systems With Config - 12 - Sample Configuration Files

config vmunix root on hp0
config hpvmunix root on hp0 swap on hp0 and hp2
config genvmunix swap generic

Finally, the hardware must be specified. Let us first just try transcribing the information
from Table 1.

controller mba0 at nexus ?
disk hp0 at mba0 disk 0
disk hp1 at mba0 disk 1
controller mba1 at nexus ?
disk hp2 at mba1 disk 2
disk hp3 at mba1 disk 3
controller uba0 at nexus ?
controller tm0 at uba0 csr 0172520 vector tmintr
tape te0 at tm0 drive 0
tape te1 at tm0 drive 1
device dh0 at uba0 csr 0160020 vector dhrint dhxint
device dm0 at uba0 csr 0170500 vector dmintr
device dh1 at uba0 csr 0160040 vector dhrint dhxint
device dh2 at uba0 csr 0160060 vector dhrint dhxint

(Oh, I forgot to mention one panel of the terminal multiplexor has modem control, thus the
‘‘dm0’’ device.)

This will suffice, but leaves us with little flexibility. Suppose our first disk controller were to
break. We would like to recable the drives normally on the second controller so that all our disks
could still be used without reconfiguring the system. To do this we wildcard the MASSBUS
adapter connections and also the slave numbers. Further, we wildcard the UNIBUS adapter con-
nections in case we decide some time in the future to purchase another adapter to offload the sin-
gle UNIBUS we currently have. The revised device specifications would then be:

controller mba0 at nexus ?
disk hp0 at mba? disk ?
disk hp1 at mba? disk ?
controller mba1 at nexus ?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller uba0 at nexus ?
controller tm0 at uba? csr 0172520 vector tmintr
tape te0 at tm0 drive 0
tape te1 at tm0 drive 1
device dh0 at uba? csr 0160020 vector dhrint dhxint
device dm0 at uba? csr 0170500 vector dmintr
device dh1 at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

The completed configuration file for ANSEL is shown in Appendix C.

5.2. VAX-11/750 with network support

Our VAX-11/750 system will be located on two 10Mb/s Ethernet local area networks and
also the DARPA Internet. The system will have a MASSBUS drive for the root file system and
two UNIBUS drives. Paging is interleaved among all three drives. We have sold our standard
DEC terminal multiplexors since this machine will be accessed solely through the network. This
machine is not intended to have a large user community, it does not have a great deal of memory.
First the global parameters:

July 27, 1983

Building Systems With Config - 13 - Sample Configuration Files

#
UCBVAX (Gateway to the world)
#
machine vax
cpu "VAX780"
cpu "VAX750"
ident UCBVAX
timezone 8 dst
maxusers 32
options INET

The multiple cpu types allow us to replace UCBVAX with a more powerful cpu without
reconfiguring the system. The value of 32 given for the maximum number of users is done to force
the system data structures to be over-allocated. That is desirable on this machine because, while
it is not expected to support many users, it is expected to perform a great deal of work. Upping
this value results in a larger disk buffer cache than would normally be allocated if the true number
of users were given. The ‘‘INET’’ indicates we plan to use the DARPA standard Internet proto-
cols on this machine.

The system images and disks are configured in next.

config vmunix root on hp swap on hp and rk0 and rk1
config upvmunix root on up
config hkvmunix root on hk swap on rk0 and rk1

controller mba0 at nexus ?
controller uba0 at nexus ?
disk hp0 at mba? drive 0
disk hp1 at mba? drive 1
controller sc0 at uba? csr 0176700 vector upintr
disk up0 at sc0 drive 0
disk up1 at sc0 drive 1
controller hk0 at uba? csr 0177440 vector rkintr
disk rk0 at hk0 drive 0
disk rk1 at hk0 drive 1

UCBVAX requires heavy interleaving of its paging area to keep up with all the mail traffic it
handles. The limiting factor on this system’s performance is usually the number of disk arms, as
opposed to memory or cpu cycles. The extra UNIBUS controller, ‘‘sc0’’, is in case the MASSBUS
controller breaks and a spare controller must be installed (most of our old UNIBUS controllers
have been replaced with the newer MASSBUS controllers, so we have a number of these around as
spares).

Finally, we add in the network support. The Internet protocols require an ‘‘inet’’ pseudo-
device in addition to the global ‘‘INET’’ option specified above. Pseudo terminals are needed to
allow users to log in across the network (remember the only hardwired terminal is the console).
The connection to the Internet is through an IMP, this requires yet another pseudo-device (in
addition to the actual hardware device used by the IMP software). And, finally, there are the two
Ethernet devices. These use a special protocol, the Address Resolution Protocol (ARP), to map
between Internet and Ethernet addresses. Thus, yet another pseudo-device is needed. The addi-
tional device specifications are show below.

July 27, 1983

Building Systems With Config - 14 - Sample Configuration Files

pseudo-device inet
pseudo-device pty
software loopback device for testing
pseudo-device loop
pseudo-device imp
device acc0 at uba? csr 0167600 vector accrint accxint
pseudo-device ether
device ec0 at uba? csr 0164330 vector ecrint eccollide ecxint
device il0 at uba? csr 0164000 vector ilrint ilcint

The completed configuration file for UCBVAX is shown in Appendix C.

5.3. Miscellaneous comments

It should be noted in these examples that neither system was configured to use disk quotas
or the 4.1BSD compatibility mode. To use these optional facilities, and others, we would probably
clean out our current configuration, reconfigure the system, then recompile and relink the system
image(s). This could, of course, be avoided by figuring out which relocatable object files are
affected by the reconfiguration, then reconfiguring and recompiling only those files affected by the
configuration change. This technique should be used carefully.

July 27, 1983

Building Systems With Config Adding New Devices

6. ADDING NEW SYSTEM SOFTWARE

This section is not for the novice, it describes some of the inner workings of the configura-
tion process as well as the pertinent parts of the system autoconfiguration process. It is intended
to give those people who intend to install new device drivers and/or other system facilities suffi-
cient information to do so in the manner which will allow others to easily share the changes.

This section is broken into four parts:

• general guidelines to be followed in modifying system code,

• how to add a device driver to 4.2BSD,

• how UNIBUS device drivers are autoconfigured under 4.2BSD on the VAX, and

• how to add non-standard system facilities to 4.2BSD.

6.1. Modifying system code

If you wish to make site-specific modifications to the system it is best to bracket them with

#ifdef SITENAME
...
#endif

to allow your source to be easily distributed to others, and also to simplify diff (1) listings. If you
choose not to use a source code control system (e.g. SCCS, RCS), and perhaps even if you do, it is
recommended that you save the old code with something of the form:

#ifndef SITENAME
...
#endif

We try to isolate our site-dependent code in individual files which may be configured with pseudo-
device specifications.

Indicate machine specific code with ‘‘#ifdef vax’’. 4.2BSD has undergone extensive work to
make it extremely portable to machines with similar architectures − you may someday find your-
self trying to use a single copy of the source code on multiple machines.

Use lint periodically if you make changes to the system. The 4.2BSD release has only one
line of lint in it. It is very simple to lint the kernel. Use the LINT configuration file, designed to
pull in as much of the kernel source code as possible, in the following manner.

$ cd /sys/conf
$ mkdir ../LINT
$ config LINT
$ cd ../LINT
$ make depend
$ make assym.s
$ make −k lint > linterrs 2>&1 &
(or for users of csh (1))
% make −k >& linterrs

This takes about 45 minutes on a lightly loaded VAX-11/750, but is well worth it.

6.2. Adding device drivers to 4.2BSD

The i/o system and config have been designed to easily allow new device support to be
added. As described in ‘‘Installing and Operating 4.2BSD on the VAX’’, the system source direc-
tories are organized as follows:

July 27, 1983

Building Systems With Config - 16 - Adding New Devices

/sys/h machine independent include files
/sys/sys machine independent system source files
/sys/conf site configuration files and basic templates
/sys/net network independent, but network related code
/sys/netinet DARPA Internet code
/sys/netimp IMP support code
/sys/netpup PUP-1 support code
/sys/vax VAX specific mainline code
/sys/vaxif VAX network interface code
/sys/vaxmba VAX MASSBUS device drivers and related code
/sys/vaxuba VAX UNIBUS device drivers and related code

Existing block and character device drivers for the VAX reside in ‘‘/sys/vax’’,
‘‘/sys/vaxmba’’, and ‘‘/sys/vaxuba’’. Network interface drivers reside in ‘‘/sys/vaxif’’. Any new
device drivers should be placed in the appropriate source code directory and named so as not to
conflict with existing devices. Normally, definitions for things like device registers are placed in a
separate file in the same directory. For example, the ‘‘dh’’ device driver is named ‘‘dh.c’’ and its
associated include file is named ‘‘dhreg.h’’.

Once the source for the device driver has been placed in a directory, the file
‘‘/sys/conf/files.machine’’, and possibly ‘‘/sys/conf/devices.machine’’ should be modified. The files
files in the conf directory contain a line for each source or binary-only file in the system. Those
files which are machine independent are located in ‘‘/sys/conf/files’’ while machine specific files are
in ‘‘/sys/conf/files.machine’’. The ‘‘devices.machine’’ file is used to map device names to major
block device numbers. If the device driver being added provides support for a new disk you will
want to modify this file (the format is obvious).

The format of the files file has grown somewhat complex over time. Entries are normally of
the form

vaxuba/foo.c optional foo device-driver

where the keyword optional indicates that to compile the ‘‘foo’’ driver into the system it must be
specified in the configuration file. If instead the driver is specified as standard, the file will be
loaded no matter what configuration is requested. This is not normally done with device drivers.
The fact that the file is specified as a device-driver results, on the VAX, in the compilation includ-
ing a −−i option for the C optimizer. This is required when pointer references are made to memory
locations in the VAX i/o address space.

Aside from including the driver in the files file, it must also be added to the device configu-
ration tables. These are located in ‘‘/sys/vax/conf.c’’, or similar for machines other than the
VAX. If you don’t understand what to add to this file, you should study an entry for an existing
driver. Remember that the position in the block device table specifies what the major block
device number is, this is needed in the ‘‘devices.machine’’ file if the device is a disk.

With the configuration information in place, your configuration file appropriately modified,
and a system reconfigured and rebooted you should incorporate the shell commands needed to
install the special files in the file system to the file ‘‘/dev/MAKEDEV’’ or
‘‘/dev/MAKEDEV.local’’. This is discussed in the document ‘‘Installing and Operating 4.2BSD
on the VAX’’.

6.3. Autoconfiguration on the VAX

4.2BSD (and 4.1BSD) require all device drivers to conform to a set of rules which allow the
system to:

1) support multiple UNIBUS and MASSBUS adapters,

2) support system configuration at boot time, and

July 27, 1983

Building Systems With Config - 17 - Adding New Devices

3) manage resources so as not to crash when devices request resources which are unavailable.

In addition, devices such as the RK07 which require everyone else to get off the UNIBUS when
they are running need cooperation from other DMA devices if they are to work. Since it is
unlikely that you will be writing a device driver for a MASSBUS device, this section is devoted
exclusively to describing the i/o system and autoconfiguration process as it applies to UNIBUS
devices.

Each UNIBUS on a VAX has a set of resources:

• 496 map registers which are used to convert from the 18 bit UNIBUS addresses into the
much larger VAX address space.

• Some number of buffered data paths (3 on an 11/750, 15 on an 11/780, 0 on an 11/730)
which are used by high speed devices to transfer data using fewer bus cycles.

There is a structure of type struct uba hd in the system per UNIBUS adapter used to manage
these resources. This structure also contains a linked list where devices waiting for resources to
complete DMA UNIBUS activity have requests waiting.

There are three central structures in the writing of drivers for UNIBUS controllers; devices
which do not do DMA i/o can often use only two of these structures. The structures are struct
uba ctlr, the UNIBUS controller structure, struct uba device the UNIBUS device structure, and
struct uba driver, the UNIBUS driver structure. The uba ctlr and uba device structures are in
one-to-one correspondence with the definitions of controllers and devices in the system configura-
tion. Each driver has a struct uba driver structure specifying an internal interface to the rest of
the system.

Thus a specification

controller sc0 at uba0 csr 0176700 vector upintr

would cause a struct uba ctlr to be declared and initialized in the file ioconf.c for the system con-
figured from this description. Similarly specifying

disk up0 at sc0 drive 0

would declare a related uba device in the same file. The up.c driver which implements this driver
specifies in its declarations:

int upprobe(), upslave(), upattach(), updgo(), upintr();
struct uba ctlr *upminfo[NSC];
struct uba device *updinfo[NUP];
u short upstd[] = { 0776700, 0774400, 0776300, 0 };
struct uba driver scdriver =

{ upprobe, upslave, upattach, updgo, upstd, "up", updinfo, "sc", upminfo };

initializing the uba driver structure. The driver will support some number of controllers named
sc0, sc1, etc, and some number of drives named up0, up1, etc. where the drives may be on any of
the controllers (that is there is a single linear name space for devices, separate from the con-
trollers.)

We now explain the fields in the various structures. It may help to look at a copy of vax-
uba/ubareg.h, h/ubavar.h and drivers such as up.c and dz.c while reading the descriptions of the
various structure fields.

uba driver structure

One of these structures exists per driver. It is initialized in the driver and contains functions
used by the configuration program and by the UNIBUS resource routines. The fields of the struc-
ture are:

ud probe
A routine which is given a caddr t address as argument and should cause an interrupt on
the device whose control-status register is at that address in virtual memory. It may be the

July 27, 1983

Building Systems With Config - 18 - Adding New Devices

case that the device does not exist, so the probe routine should use delays (via the
DELAY(n) macro which delays for n microseconds) rather than waiting for specific events to
occur. The routine must not declare its argument as a register parameter, but must
declare

register int br, cvec;

as local variables. At boot time the system takes special measures that these variables are
‘‘value-result’’ parameters. The br is the IPL of the device when it interrupts, and the cvec
is the interrupt vector address on the UNIBUS. These registers are actually filled in in the
interrupt handler when an interrupt occurs.

As an example, here is the up.c probe routine:

upprobe(reg)
caddr t reg;

{
register int br, cvec;

#ifdef lint
br = 0; cvec = br; br = cvec;

#endif
((struct updevice *)reg)->upcs1 = UP IE|UP RDY;
DELAY(10);
((struct updevice *)reg)->upcs1 = 0;
return (sizeof (struct updevice));

}

The definitions for lint serve to indicate to it that the br and cvec variables are value-result.
The statements here interrupt enable the device and write the ready bit UP RDY. The 10
microsecond delay insures that the interrupt enable will not be canceled before the interrupt
can be posted. The return of ‘‘sizeof (struct updevice)’’ here indicates that the probe rou-
tine is satisfied that the device is present (the value returned is not currently used, but
future plans dictate you should return the amount of space in the device’s register bank). A
probe routine may use the function ‘‘badaddr’’ to see if certain other addresses are accessible
on the UNIBUS (without generating a machine check), or look at the contents of locations
where certain registers should be. If the registers contents are not acceptable or the
addresses don’t respond, the probe routine can return 0 and the device will not be consid-
ered to be there.

One other thing to note is that the action of different VAXen when illegal addresses are
accessed on the UNIBUS may differ. Some of the machines may generate machine checks
and some may cause UNIBUS errors. Such considerations are handled by the configuration
program and the driver writer need not be concerned with them.

It is also possible to write a very simple probe routine for a one-of-a-kind device if probing is
difficult or impossible. Such a routine would include statements of the form:

br = 0x15;
cvec = 0200;

for instance, to declare that the device ran at UNIBUS br5 and interrupted through vector
0200 on the UNIBUS. The current UDA-50 driver does something similar to this because
the device is so difficult to force an interrupt on that it hardly seems worthwhile.

ud slave
This routine is called with a uba device structure (yet to be described) and the address of
the device controller. It should determine whether a particular slave device of a controller is
present, returning 1 if it is and 0 if it is not. As an example here is the slave routine for
up.c.

July 27, 1983

Building Systems With Config - 19 - Adding New Devices

upslave(ui, reg)
struct uba device *ui;
caddr t reg;

{
register struct updevice *upaddr = (struct updevice *)reg;

upaddr->upcs1 = 0; /* conservative */
upaddr->upcs2 = ui->ui slave;
if (upaddr->upcs2&UPCS2 NED) {

upaddr->upcs1 = UP DCLR|UP GO;
return (0);

}
return (1);

}

Here the code fetches the slave (disk unit) number from the ui slave field of the uba device
structure, and sees if the controller responds that that is a non-existent driver (NED). If the
drive a drive clear is issued to clean the state of the controller, and 0 is returned indicating
that the slave is not there. Otherwise a 1 is returned.

ud attach
The attach routine is called after the autoconfigure code and the driver concur that a
peripheral exists attached to a controller. This is the routine where internal driver state
about the peripheral can be initialized. Here is the attach routine from the up.c driver:

upattach(ui)
register struct uba device *ui;

{
register struct updevice *upaddr;

if (upwstart == 0) {
timeout(upwatch, (caddr t)0, hz);
upwstart++;

}
if (ui->ui dk >= 0)

dk mspw[ui->ui dk] = .0000020345;
upip[ui->ui ctlr][ui->ui slave] = ui;
up softc[ui->ui ctlr].sc ndrive++;
ui->ui type = upmaptype(ui);

}

The attach routine here performs a number of functions. The first time any drive is
attached to the controller it starts the timeout routine which watches the disk drives to
make sure that interrupts aren’t lost. It also initializes, for devices which have been
assigned iostat numbers (when ui->ui dk >= 0), the transfer rate of the device in the array
dk mspw, the fraction of a second it takes to transfer 16 bit word. It then initializes an
inverting pointer in the array upip which will be used later to determine, for a particular up
controller and slave number, the corresponding uba device. It increments the count of the
number of devices on this controller, so that search commands can later be avoided if the
count is exactly 1. It then attempts to decipher the actual type of drive attached to the
controller in a controller-specific way. On the EMULEX SC-21 it may ask for the number of
tracks on the device and use this to decide what the drive type is. The drive type is used to
setup disk partition mapping tables and other device specific information.

ud dgo
Is the routine which is called by the UNIBUS resource management routines when an opera-
tion is ready to be started (because the required resources have been allocated). The

July 27, 1983

Building Systems With Config - 20 - Adding New Devices

routine in up.c is:

updgo(um)
struct uba ctlr *um;

{
register struct updevice *upaddr = (struct updevice *)um->um addr;

upaddr->upba = um->um ubinfo;
upaddr->upcs1 = um->um cmd|((um->um ubinfo>>8)&0x300);

}

This routine uses the field um ubinfo of the uba ctlr structure which is where the UNIBUS
routines store the UNIBUS map allocation information. In particluar, the low 18 bits of this
word give the UNIBUS address assigned to the transfer. The assignment to upba in the go
routine places the low 16 bits of the UNIBUS address in the disk UNIBUS address register.
The next assignment places the disk operation command and the extended (high 2) address
bits in the device control-status register, starting the i/o operation. The field um cmd was
initialized with the command to be stuffed here in the driver code itself before the call to
the ubago routine which eventually resulted in the call to updgo.

ud addr
Are the conventional addresses for the device control registers in UNIBUS space. This infor-
mation is used by the system to look for instances of the device supported by the driver.
When the system probes for the device it first checks for a control-status register located at
the address indicated in the configuration file (if supplied), then uses the list of conventional
addresses pointed to be ud addr.

ud dname
Is the name of a device supported by this controller; thus the disks on a SC-21 controller are
called up0, up1, etc. That is because this field contains up.

ud dinfo
Is an array of back pointers to the uba device structures for each device attached to the con-
troller. Each driver defines a set of controllers and a set of devices. The device address
space is always one-dimensional, so that the presence of extra controllers may be masked
away (e.g. by pattern matching) to take advantage of hardware redundancy. This field is
filled in by the configuration program, and used by the driver.

ud mname
The name of a controller, e.g. sc for the up.c driver. The first SC-21 is called sc0, etc.

ud minfo
The backpointer array to the structures for the controllers.

ud xclu
If non-zero specifies that the controller requires exclusive use of the UNIBUS when it is run-
ning. This is non-zero currently only for the RK611 controller for the RK07 disks to map
around a hardware problem. It could also be used if 6250bpi tape drives are to be used on
the UNIBUS to insure that they get the bandwidth that they need (basically the whole
bus).

uba ctlr structure

One of these structures exists per-controller. The fields link the controller to its UNIBUS
adapter and contain the state information about the devices on the controller. The fields are:

um driver
A pointer to the struct uba device for this driver, which has fields as defined above.

um ctlr
The controller number for this controller, e.g. the 0 in sc0.

July 27, 1983

Building Systems With Config - 21 - Adding New Devices

um alive
Set to 1 if the controller is considered alive; currently, always set for any structure encoun-
tered during normal operation. That is, the driver will have a handle on a uba ctlr structure
only if the configuration routines set this field to a 1 and entered it into the driver tables.

um intr
The interrupt vector routines for this device. These are generated by config and this field is
initialized in the ioconf.c file.

um hd
A back-pointer to the UNIBUS adapter to which this controller is attached.

um cmd
A place for the driver to store the command which is to be given to the device before calling
the routine ubago with the devices uba device structure. This information is then retrieved
when the device go routine is called and stuffed in the device control status register to start
the i/o operation.

um ubinfo
Information about the UNIBUS resources allocated to the device. This is normally only
used in device driver go routine (as updgo above) and occasionally in exceptional condition
handling such as ECC correction.

um tab
This buffer structure is a place where the driver hangs the device structures which are ready
to transfer. Each driver allocates a buf structure for each device (e.g. updtab in the up.c
driver) for this purpose. You can think of this structure as a device-control-block, and the
buf structures linked to it as the unit-control-blocks. The code for dealing with this struc-
ture is stylized; see the rk.c or up.c driver for the details. If the ubago routine is to be used,
the structure attached to this buf structure must be:

• A chain of buf structures for each waiting device on this controller.

• On each waiting buf structure another buf structure which is the one containing the
parameters of the i/o operation.

uba device structure

One of these structures exist for each device attached to a UNIBUS controller. Devices
which are not attached to controllers or which perform no buffered data path DMA i/o may have
only a device structure. Thus dz and dh devices have only uba device structures. The fields are:

ui driver
A pointer to the struct uba driver structure for this device type.

ui unit
The unit number of this device, e.g. 0 in up0, or 1 in dh1.

ui ctlr
The number of the controller on which this device is attached, or −1 if this device is not on
a controller.

ui ubanum
The number of the UNIBUS on which this device is attached.

ui slave
The slave number of this device on the controller which it is attached to, or −1 if the device
is not a slave. Thus a disk which was unit 2 on a SC-21 would have ui slave 2; it might or
might not be up2, that depends on the system configuration specification.

ui intr
The interrupt vector entries for this device, copied into the UNIBUS interrupt vector at
boot time. The values of these fields are filled in by config to small code segments which it
generates in the file ubglue.s.

July 27, 1983

Building Systems With Config - 22 - Adding New Devices

ui addr
The control-status register address of this device.

ui dk
The iostat number assigned to this device. Numbers are assigned to disks only, and are
small positive integers which index the various dk * arrays in <sys/dk.h>.

ui flags
The optional ‘‘flags xxx’’ parameter from the configuration specification was copied to this
field, to be interpreted by the driver. If flags was not specified, then this field will contain a
0.

ui alive
The device is really there. Presently set to 1 when a device is determined to be alive, and
left 1.

ui type
The device type, to be used by the driver internally.

ui physaddr
The physical memory address of the device control-status register. This is used in the
device dump routines typically.

ui mi
A struct uba ctlr pointer to the controller (if any) on which this device resides.

ui hd
A struct uba hd pointer to the UNIBUS on which this device resides.

UNIBUS resource management routines

UNIBUS drivers are supported by a collection of utility routines which manage UNIBUS
resources. If a driver attempts to bypass the UNIBUS routines, other drivers may not operate
properly. The major routines are: uballoc to allocate UNIBUS resources, ubarelse to release previ-
ously allocated resources, and ubago to initiate DMA. When allocating UNIBUS resources you
may request that you

NEEDBDP
if you need a buffered data path,

HAVEBDP
if you already have a buffered data path and just want new mapping registers (and access to
the UNIBUS), and

CANTWAIT
if you are calling (potentially) from interrupt level

If the presentation here does not answer all the questions you may have, consult the file
/sys/vaxuba/uba.c

Autoconfiguration requirements

Basically all you have to do is write a ud probe and a ud attach routine for the controller. It
suffices to have a ud probe routine which just initializes br and cvec, and a ud attach routine
which does nothing. Making the device fully configurable requires, of course, more work, but is
worth it if you expect the device to be in common usage and want to share it with others.

If you managed to create all the needed hooks, then make sure you include the necessary
header files; the ones included by vaxuba/ct.c are nearly minimal. Order is important here, don’t
be surprised at undefined structure complaints if you order the includes wrongly. Finally if you
get the device configured in, you can try bootstrapping and see if configuration messages print out
about your device. It is a good idea to have some messages in the probe routine so that you can
see that you are getting called and what is going on. If you do not get called, then you probably
have the control-status register address wrong in your system configuration. The autoconfigure

July 27, 1983

Building Systems With Config - 23 - Adding New Devices

code notices that the device doesn’t exist in this case and you will never get called.

Assuming that your probe routine works and you manage to generate an interrupt, then you
are basically back to where you would have been under older versions of UNIX. Just be sure to
use the ui ctlr field of the uba device structures to address the device; compiling in funny con-
stants will make your driver only work on the CPU type you have (780, 750, or 730).

Other bad things that might happen while you are setting up the configuration stuff:

• You get ‘‘nexus zero vector’’ errors from the system. This will happen if you cause a device to
interrupt, but take away the interrupt enable so fast that the UNIBUS adapter cancels the
interrupt and confuses the processor. The best thing to do it to put a modest delay in the
probe code between the instructions which should cause and interrupt and the clearing of the
interrupt enable. (You should clear interrupt enable before you leave the probe routine so the
device doesn’t interrupt more and confuse the system while it is configuring other devices.)

• The device refuses to interrupt or interrupts with a ‘‘zero vector’’. This typically indicates a
problem with the hardware or, for devices which emulate other devices, that the emulation is
incomplete. Devices may fail to present interrupt vectors because they have configuration
switches set wrong, or because they are being accessed in inappropriate ways. Incomplete
emulation can cause ‘‘maintenance mode’’ features to not work properly, and these features are
often needed to force device interrupts.

6.4. Adding non-standard system facilities

This section considers the work needed to augment config’s data base files for non-standard
system facilities.

As far as config is concerned non-standard facilities may fall into two categories. Config
understands that certain files are used especially for kernel profiling. These files are indicated in
the files files with a profiling-routine keyword. For example, the current profiling subroutines are
sequestered off in a separate file with the following entry:

sys/subr mcount.c optional profiling-routine

The profiling-routine keyword forces config to not compile the source file with the −−pg option.

The second keyword which can be of use is the config-dependent keyword. This causes config
to compile the indicated module with the global configuration parameters. This allows certain
modules, such as machdep.c to size system data structures based on the maximum number of
users configured for the system.

July 27, 1983

Building Systems With Config Configuration File Grammar

APPENDIX A. CONFIGURATION FILE GRAMMAR

The following grammar is a compressed form of the actual yacc (1) grammar used by config
to parse configuration files. Terminal symbols are shown all in upper case, literals are embold-
ened; optional clauses are enclosed in brackets, ‘‘[’’ and ‘‘]’’; zero or more instantiations are
denoted with ‘‘*’’.

Configuration ::= [Spec ;]*

Spec ::= Config spec
| Device spec
| trace
| /* lambda */

/* configuration specifications */

Config spec ::= machine ID
| cpu ID
| options Opt list
| ident ID
| System spec
| timezone [−−] NUMBER [dst [NUMBER]]
| timezone [−−] FPNUMBER [dst [NUMBER]]
| maxusers NUMBER

/* system configuration specifications */

System spec ::= config ID System parameter [System parameter]*

System parameter ::= swap spec | root spec | dump spec | arg spec

swap spec ::= swap [on] swap dev [and swap dev]*

swap dev ::= dev spec [size NUMBER]

root spec ::= root [on] dev spec

dump spec ::= dumps [on] dev spec

arg spec ::= args [on] dev spec

dev spec ::= dev name | major minor

major minor ::= major NUMBER minor NUMBER

dev name ::= ID [NUMBER [ID]]

/* option specifications */

Opt list ::= Option [, Option]*

Option ::= ID [= Opt value]

July 27, 1983

Building Systems With Config - 25 - Configuration File Grammar

Opt value ::= ID | NUMBER

/* device specifications */

Device spec ::= device Dev name Dev info Int spec
| master Dev name Dev info
| disk Dev name Dev info
| tape Dev name Dev info
| controller Dev name Dev info [Int spec]
| pseudo-device Dev [NUMBER]

Dev name ::= Dev NUMBER

Dev ::= uba | mba | ID

Dev info ::= Con info [Info]*

Con info ::= at Dev NUMBER
| at nexus NUMBER

Info ::= csr NUMBER
| drive NUMBER
| slave NUMBER
| flags NUMBER

Int spec ::= vector ID [ID]*
| priority NUMBER

Lexical Conventions

The terminal symbols are loosely defined as:

ID
One or more alphabetics, either upper or lower case, and underscore, ‘‘ ’’.

NUMBER
Approximately the C language specification for an integer number. That is, a leading ‘‘0x’’
indicates a hexadecimal value, a leading ‘‘0’’ indicates an octal value, otherwise the number
is expected to be a decimal value. Hexadecimal numbers may use either upper or lower case
alphabetics.

FPNUMBER
A floating point number without exponent. That is a number of the form ‘‘nnn.ddd’’, where
the fractional component is optional.

In special instances a question mark, ‘‘?’’, can be substituted for a ‘‘NUMBER’’ token. This is
used to effect wildcarding in device interconnection specifications.

Comments in configuration files are indicated by a ‘‘#’’ character at the beginning of the line; the
remainder of the line is discarded.

A specification is interpreted as a continuation of the previous line if the first character of the line
is tab.

July 27, 1983

Building Systems With Config Device Defaulting Rules

APPENDIX B. RULES FOR DEFAULTING SYSTEM DEVICES

When config processes a ‘‘config’’ rule which does not fully specify the location of the root
file system, paging area(s), device for system dumps, and device for argument list processing it
applies a set of rules to define those values left unspecified. The following list of rules are used in
defaulting system devices.

1) If a root device is not specified, the swap specification must indicate a ‘‘generic’’ system is to
be built.

2) If the root device does not specify a unit number, it defaults to unit 0.

3) If the root device does not include a partition specification, it defaults to the ‘‘a’’ partition.

4) If no swap area is specified, it defaults to the ‘‘b’’ partition of the root device.

5) If no device is specified for processing argument lists, the first swap partition is selected.

6) If no device is chosen for system dumps, the first swap partition is selected (see below to find
out where dumps are placed within the partition).

The following table summarizes the default partitions selected when a device specification is
incomplete, e.g. ‘‘hp0’’.

Type Partition

root ‘‘a’’
swap ‘‘b’’
args ‘‘b’’
dumps ‘‘b’’

Multiple swap/paging areas

When multiple swap partitions are specified, the system treats the first specified as a ‘‘pri-
mary’’ swap area which is always used. The remaining partitions are then interleaved into the
paging system at the time a swapon(2) system call is made. This is normally done at boot time
with a call to swapon(8) from the /etc/rc file.

System dumps

System dumps are automatically taken after a system crash, provided the device driver for
the ‘‘dumps’’ device supports this. The dump contains the contents of memory, but not the swap
areas. Normally the dump device is a disk in which case the information is copied to a location
near the back of the partition. The dump is placed in the back of the partition because the pri-
mary swap and dump device are commonly the same device and this allows the system to be
rebooted without immediately overwriting the saved information. When a dump has occurred,
the system variable dumpsize is set to a non-zero value indicating the size (in bytes) of the dump.
The savecore (8) program then copies the information from the dump partition to a file in a
‘‘crash’’ directory and also makes a copy of the system which was running at the time of the crash
(usually ‘‘/vmunix’’). The offset to the system dump is defined in the system variable dumplo (a
sector offset from the front of the dump partition). The savecore program operates by reading the
contents of dumplo, dumpdev, and dumpmagic from /dev/kmem, then comparing the value of
dumpmagic read from /dev/kmem to that located in corresponding location in the dump area of
the dump partition. If a match is found, savecore assumes a crash occurred and reads dumpsize
from the dump area of the dump partition. This value is then used in copying the system dump.
Refer to savecore (8) for more information about its operation.

The value dumplo is calculated to be

dumpdev-size − DUMPDEV

July 27, 1983

Building Systems With Config - 27 - Device Defaulting Rules

where dumpdev-size is the size of the disk partition where system dumps are to be placed, and
DUMPDEV is 10 Megabytes. If the disk partition is not large enough to hold a 10 Megabyte
dump, dumplo is set to 0 (the front of the partition). For sites with more than 10 Megabytes of
memory the definition of DUMPDEV in /sys/vax/autoconf.c will have to be changed.

July 27, 1983

Building Systems With Config Sample Config Files

APPENDIX C. SAMPLE CONFIGURATION FILES

The following configuration files are developed in section 5; they are included here for com-
pleteness.

#
ANSEL VAX (a picture perfect machine)
#
machine vax
cpu VAX780
timezone 8 dst
ident ANSEL
maxusers 40

config vmunix root on hp0
config hpvmunix root on hp0 swap on hp0 and hp2
config genvmunix swap generic

controller mba0 at nexus ?
disk hp0 at mba? disk ?
disk hp1 at mba? disk ?
controller mba1 at nexus ?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller uba0 at nexus ?
controller tm0 at uba? csr 0172520 vector tmintr
tape te0 at tm0 drive 0
tape te1 at tm0 drive 1
device dh0 at uba? csr 0160020 vector dhrint dhxint
device dm0 at uba? csr 0170500 vector dmintr
device dh1 at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

July 27, 1983

Building Systems With Config - 29 - Sample Config Files

#
UCBVAX - Gateway to the world
#
machine vax
cpu "VAX780"
cpu "VAX750"
ident UCBVAX
timezone 8 dst
maxusers 32
options INET

config vmunix root on hp swap on hp and rk0 and rk1
config upvmunix root on up
config hkvmunix root on hk swap on rk0 and rk1

controller mba0 at nexus ?
controller uba0 at nexus ?
disk hp0 at mba? drive 0
disk hp1 at mba? drive 1
controller sc0 at uba? csr 0176700 vector upintr
disk up0 at sc0 drive 0
disk up1 at sc0 drive 1
controller hk0 at uba? csr 0177440 vector rkintr
disk rk0 at hk0 drive 0
disk rk1 at hk0 drive 1
pseudo-device inet
pseudo-device pty
software loopback device for testing
pseudo-device loop
pseudo-device imp
device acc0 at uba? csr 0167600 vector accrint accxint
pseudo-device ether
device ec0 at uba? csr 0164330 vector ecrint eccollide ecxint
device il0 at uba? csr 0164000 vector ilrint ilcint

July 27, 1983

Building Systems With Config Data Structure Sizing Rules

APPENDIX D. VAX KERNEL DATA STRUCTURE SIZING RULES

Certain system data structures are sized at compile time according to the maximum number
of simultaneous users expected, while others are calculated at boot time based on the physical
resources present; e.g. memory. This appendix lists both sets of rules and also includes some hints
on changing built-in limitations on certain data structures.

Compile time rules

The file /sys/conf/param.c contains the definitions of almost all data structures sized at
compile time. This file is copied into the directory of each configured system to allow configura-
tion-dependent rules and values to be maintained. The rules implied by its contents are summa-
rized below (here MAXUSERS refers to the value defined in the configuration file in the
‘‘maxusers’’ rule).

nproc
The maximum number of processes which may be running at any time. It is defined to be
20 + 8 * MAXUSERS and referred to in other calculations as NPROC.

ntext
The maximum number of active shared text segments. Defined as 24 + MAXUSERS +
NETSLOP, where NETSLOP is 20 when the Internet protocols are configured in the system
and 0 otherwise. The added size for supporting the network is to take into account the
numerous server processes which are likely to exist.

ninode
The maximum number of files in the file system which may be active at any time. This
includes files in use by users, as well as directory files being read or written by the system
and files associated with bound sockets in the UNIX ipc domain. This is defined as
(NPROC + 16 + MAXUSERS) + 32.

nfile
The number of ‘‘file table’’ structures. One file table structure is used for each open,
unshared, file descriptor. Multiple file descriptors may reference a single file table entry
when they are created through a dup call, or as the result of a fork. This is defined to be

16 * (NPROC + 16 + MAXUSERS) / 10 + 32 + 2 * NETSLOP

where NETSLOP is defined as for ntext.

ncallout
The number of ‘‘callout’’ structures. One callout structure is used per internal system event
handled with a timeout. Timeouts are used for terminal delays, watchdog routines in device
drivers, protocol timeout processing, etc. This is defined as 16 + NPROC.

nclist
The number of ‘‘c-list’’ structures. C-list structures are used in terminal i/o. This is defined
as 100 + 16 * MAXUSERS.

nmbclusters
The maximum number of pages which may be allocated by the network. This is defined as
256 (a quarter megabyte of memory) in /sys/h/mbuf.h. In practice, the network rarely uses
this much memory. It starts off by allocating 64 kilobytes of memory, then requesting more
as required. This value represents an upper bound.

nquota
The number of ‘‘quota’’ structures allocated. Quota structures are present only when disc
quotas are configured in the system. One quota structure is kept per user. This is defined
to be (MAXUSERS * 9) / 7 + 3.

July 27, 1983

Building Systems With Config - 31 - Data Structure Sizing Rules

ndquot
The number of ‘‘dquot’’ structures allocated. Dquot structures are present only when disc
quotas are configured in the system. One dquot structure is required per user, per active file
system quota. That is, when a user manipulates a file on a file system on which quotas are
enabled, the information regarding the user’s quotas on that file system must be in-core.
This information is cached, so that not all information must be present in-core all the time.
This is defined as (MAXUSERS * NMOUNT) / 4 + NPROC, where NMOUNT is the maxi-
mum number of mountable file systems.

In addition to the above values, the system page tables (used to map virtual memory in the ker-
nel’s address space) are sized at compile time by the SYSPTSIZE definition in the file
/sys/vax/param.h. This is defined to be 20 + MAXUSERS pages of page tables. Its definition
affects the size of many data structures allocated at boot time because it constrains the amount of
virtual memory which may be addressed by the running system. This is often the limiting factor
in the size of the buffer cache.

Run-time calculations

The most important data structures sized at run-time are those used in the buffer cache.
Allocation is done by swiping physical memory (and the associated virtual memory) immediately
after the system has been started up; look in the file /sys/vax/machdep.c. The amount of physi-
cal memory which may be allocated to the buffer cache is constrained by the size of the system
page tables, among other things. While the system may calculate a large amount of memory to
be allocated to the buffer cache, if the system page table is too small to map this physical memory
into the virtual address space of the system, only as much as can be mapped will be used.

The buffer cache is comprised of a number of ‘‘buffer headers’’ and a pool of pages attached
to these headers. Buffer headers are divided into two categories: those used for swapping and pag-
ing, and those used for normal file i/o. The system tries to allocate 10% of available physical
memory for the buffer cache (where available does not count that space occupied by the system’s
text and data segments). If this results in fewer than 16 pages of memory allocated, then 16
pages are allocated. This value is kept in the initialized variable bufpages so that it may be
patched in the binary image (to allow tuning without recompiling the system). A sufficient
number of file i/o buffer headers are then allocated to allow each to hold 2 pages each, and half as
many swap i/o buffer headers are then allocated. The number of swap i/o buffer headers is con-
strained to be no more than 256.

System size limitations

As distributed, the sum of the virtual sizes of the core-resident processes is limited to 64M
bytes. The size of the text, and data segments of a single process are currently limited to 6M
bytes each, and the stack segment size is limited to 512K bytes as a soft, user-changeable limit,
and may be increased to 6M with the setrlimit (2) system call. If these are insufficient, they can
be increased by changing the constants MAXTSIZ, MAXDSIZ and MAXSSIZ in the file
/sys/vax/vmparam.h, while changing the definitions in /sys/h/dmap.h and /sys/h/text.h. You
must be careful in doing this that you have adequate paging space. As normally configured , the
system has only 16M bytes per paging area. The best way to get more space is to provide multi-
ple, thereby interleaved, paging areas.

To increase the amount of resident virtual space possible, you can alter the constant
USRPTSIZE (in /sys/vax/vmparam.h). To allow 128 megabytes of resident virtual space one
would change the 8 to a 16.

Because the file system block numbers are stored in page table pg blkno entries, the maxi-
mum size of a file system is limited to 2ˆ19 1024 byte blocks. Thus no file system can be larger
than 512M bytes.

The count of mountable file systems is limited to 15. This should be sufficient. If you have
many disks it makes sense to make some of them single file systems, and the paging areas don’t

July 27, 1983

Building Systems With Config - 32 - Data Structure Sizing Rules

count in this total. To increase this it will be necessary to change the core-map /sys/h/cmap.h
since there is a 4 bit field used here. The size of the core-map will then expand to 16 bytes per
1024 byte page. (Don’t forget to change MSWAPX and NMOUNT in /sys/h/param.h also.)

The maximum value NOFILE (open files per process limit) can be raised to is 30 because of
a bit field in the page table entry in /sys/machine/pte.h.

July 27, 1983

